А.И. Акимов
Предлагаем вниманию читателей почетную лекцию имени академика Б.Н. Юрьева, прочитанную на 9-м Форуме РосВО начальником вертолетного отделения ЛИИ имени М.М. Громова, д.т.н. Александром Ивановичем Акимовым на тему «Летные исследования проблем вертолетостроения, выполненные в ЛИИ им. М.М. Громова при творческом участии М.Л. Миля».
На первых серийных вертолетах Ми-4 впервые в полетах проявилось опасное явление, заключавшиеся в том, что при повышенных оборотах несущего винта и скорости полета, близкой к максимальной, значительно увеличивались вибрации вертолета, появлялась прогрессирующая тряска, сопровождавшаяся «размывом конуса винта». По имени летчика-испытателя Калиберного, впервые наблюдавшего такое поведение лопастей, это явление среди специалистов получило название «эффект Калиберного». Причина этого явления заключалась в возникновении поворотно-махового флаттера лопастей несущего винта вертолета.
По инициативе М.Л. Миля один из первых серийных вертолетов Ми-4, на котором проявился флаттер несущего винта, был передан в ЛИИ для всесторонних исследований. К работе были привлечены ведущие ученые по аэроупругости конструкции вертолетов Р.А. Михеев (ЛИИ), В.Д. Ильичев (ЦАГИ), А.В. Некрасов (МВЗ). Летные исследования показали, что при отсутствии флаттера все лопасти на каждом обороте винта совершают идентичное маховое движение по первой и второй гармонике. При сдвиге кривых махового движения всех лопастей по азимуту на конструктивные углы между лопастями относительно одной из рассматриваемых лопастей кривые в = /(у) практически не расходятся между собой. Поэтому летчики в полете видят одну линию, по которой двигаются концы всех лопастей. При появлении первых признаков флаттера (начало флаттера) отмечается заметное расхождение махового движения всех лопастей, совмещенного по азимуту.
При определенном сочетании оборотов винта и скорости полета изменение по азимуту махового движения каждой лопасти приобретает вид биений. А поскольку на каждом обороте несущего винта закон изменения махового движения лопастей неодинаковый, то при совмещении махового движения лопастей по азимуту на конструктивные углы между лопастями кривые β = ƒ(ψ) значительно расходятся между собой. Именно поэтому летчик видит впереди «размыв конуса» несущего винта.
По аналогичному закону изменяются шарнирные моменты лопастей. При этом на корпус вертолета передаются значительные вибрации, которые летчик квалифицирует как «тряску». При флаттере лопастей несущего винта значительно, почти на 50%, увеличиваются постоянные и переменные составляющие шарнирных моментов лопастей, что является небезопасным. В результате анализа махового движения и шарнирных моментов лопастей определена частота флаттера винта вертолета Ми-4, равная ƒф = 5,1 Гц. Частота вибраций, передаваемых на корпус вертолета ƒк, при возникновении флаттера равна: ƒк = ƒф + ηв , где η = 3,2 – частота вращения несущего винта, Гц. Таким образом, частота вибраций корпуса и других невращающихся частей вертолета Ми-4 при флаттере равна примерно 8,3 Гц.
Из уравнений махового флаттера лопасти шарнирного несущего винта следует, что главное влияние на критическую по флаттеру частоту вращения лопасти оказывают: положение по хорде центров тяжести сечений и фокусов профилей, величина компенсатора взмаха, жесткость проводки управления и скорость полета.
Разработанная методика определения запасов до флаттера лопастей винта при на земных испытаниях заключается в раскрутке несущего винта до максимально допустимой частоты вращения винта η в полете в ηmax исходном варианте и со смещением эффективной центровки Хф = Хф/Ь концевой части лопасти на 2-3% назад путем установки провоцирующих грузов на триммеры лопастей. Режимы выполняются с отклонением ручки циклического управления от нейтрального положения примерно на 75% хода. Если на таких режимах флаттер не возникает, то вертолет считается безопасным по флаттеру. В летных испытаниях установлено, что увеличение скорости полета от 0 до 250-300 км/ч по своему влиянию на критическую по флаттеру частоту вращения винта эквивалентно смещению назад эффективной центровки на величину около 2%. По такой методике и в настоящее время проводят испытания на флаттер всех лопастей несущего винта при их производстве.
В середине 50-х годов летчик-испытатель В.В. Виницкий выступил с предложением отработать в полете демонстрационный каскад фигур сложного пилотажа на вертолете Ми-4. Цель этого предложения заключалась в показе военным и гражданским эксплуатантам маневренных возможностей вертолетов, которые могут использоваться при их эксплуатации. Предварительно была проработана схема комплекса фигур сложного пилотажа и определены расширенные ограничения параметров на этих режимах. М.Л. Миль поддержал выполнение такой работы, которую рассматривал как средство более глубокого понимания возможностей нового типа летательного аппарата, особенно для военного применения. Для отработки режимов сложного пилотажа вертолет был оборудован экспериментальной аппаратурой для регистрации параметров полета, отклонений органов управления, режимов работы двигателя и характерных параметров при маневрировании.
Каскад фигур включал в себя вертикальный взлет, набор высоты до 150 м по спирали с большой угловой скоростью юу в ограниченном пространстве, крутой набор высоты с потерей скорости, быстрый разворот на 180° в верхней точке маневра, пикирование с разгоном, выход из пикирования с выполнением «горки» и разворотом на 180° с переходом в пикирование, последующий набор высоты, резкое снижение и посадку. Весь каскад этих фигур выполнялся непрерывно на малых высотах и являлся весьма зрелищным представлением. Этот каскад фигур сложного пилотажа был продемонстрирован в 1958 году на авиационном празднике в Тушино, посвященном Дню Воздушного флота СССР, и был встречен с большим интересом и восторгом со стороны многочисленных зрителей, авиационных специалистов, корреспондентов средств массовой информации, в том числе и зарубежных представителей. В то время такая маневренность входившего в широкую эксплуатацию нового типа летательного аппарата была продемонстрирована впервые в мире, и это вызвало большой интерес еще и потому, что блистательный маневренный полет был выполнен на вертолете транспортной категории. М.Л. Миль высоко оценил летное мастерство летчика В.В. Виницкого, проявленное при демонстрации маневренных возможностей «тяжелого» по тем временам вертолета Ми-4, и высказал мнение, что он укрепился в необходимости разработки специального боевого вертолета как подвижной, маневренной платформы со стрелково-пушечным, бомбовым и ракетным вооружением.
Значительное увеличение ресурса (с 500 до 2500 часов) лопастей несущего винта вертолета Ми-4 было достигнуто применением вместо лопастей со стальным трубчатым лонжероном и фанерно-полотняной обшивкой цельнометаллических лопастей с дюралевым лонжероном и хвостовыми отсеками с металлической обшивкой и сотовым заполнителем. Технология изготовления таких лопастей обусловила ряд особенностей их аэродинамической компоновки: прямоугольную форму в плане, практически постоянную относительную толщину профиля по длине лопасти и ограниченную геометрическую линейную крутку 5°, что не соответствовало оптимальным параметрам для улучшения летно-технических характеристик (в первую очередь максимальной тяги, потолка висения и расходов топлива в крейсерском полете). Из расчетов следовало, что неоптимальная аэродинамическая компоновка цельнометаллических лопастей приведет к заметному ухудшению этих летных характеристик вертолета. По предложению М.Л. Миля один из первых комплектов цельнометаллических лопастей был передан в ЛИИ для количественной оценки тяговых характеристик и расходов топлива вертолета Ми-4.
Применение цельнометаллических лопастей увеличило тягу несущего винта примерно на 400 кг, что составляет 25% полезной нагрузки вертолета. Часовой расход топлива вертолета на крейсерском режиме уменьшился на 10%. Как показал анализ, такое существенное улучшение этих весьма важных летных характеристик объясняется тем, что несмотря на некоторое повышение индуктивных потерь мощности вертолета новые цельнометаллические лопасти имеют значительно меньшее профильное сопротивление.
Поэтому цельнометаллические лопасти были внедрены в начале 50-х годов впервые в серийное производство вертолетов Ми-4. Подобные лопасти находятся в эксплуатации и в настоящее время на ряде отечественных вертолетов (все модификации вертолета Ми-8, Ми-24, Ка-27 и др.).
При установке крыла как дополнительной несущей поверхности на транспортном вертолете предполагалось, что на больших скоростях полета вследствие уменьшения тяги винта будет достигнуто уменьшение потребной мощности, а следовательно, и расходов топлива, и характеристик нагружения несущей системы и систем управления вертолета. Теоретические методы вследствие сложного взаимного индуктивного влияния пары «несущий винт – крыло» не обеспечивали расчет этих характеристик с достаточной точностью, что не позволяло уверенно оценить целесообразность применения крыла на вертолете.
Для измерения подъемной силы крыла были разработаны специальные динамометры, которые по конструкции и размерам были идентичны кронштейнам крепления крыла на фюзеляже вертолета и обеспечивали достаточную точность измерений.
На режиме висения вне «воздушной подушки» вертикальная сила крыла направлена вниз и равна 300 кг. Таким образом, с учетом веса крыла, равного 900 кг, суммарное уменьшение грузоподъемности вертолета Ми-6 при установке крыла составляет значительную величину – около 1200 кг.
Полученные по материалам летных испытаний расходы топлива вертолета Ми-6 с крылом и без крыла при одинаковой полетной массе мало различаются между собой, и на крейсерском режиме это отличие не превышает 1%, что находится в пределах погрешности измерений. Характеристики нагружения несущей системы и силовой части систем управления вертолета с крылом и без крыла также практически не изменились. Таким образом, при снятии крыла на вертолете Ми-6 повышается грузоподъемность, а расходы топлива и нагружение конструкции при этом практически не изменяются. Поэтому было принято решение о возможности эксплуатации вертолета Ми-6 без крыла.
Корневые сечения лопастей обтекаются воздушным потоком с малыми окружными скоростями. В поступательном полете вертолета по мере увеличения скорости в диапазоне азимутов отступающей лопасти образуется круговая зона обратного обтекания с относительным диаметром do = dо/R, равным μ. Оперируя этими очевидными факторами, некоторые специалисты предлагали «оголить» лопасти в корневой части, то есть оставить только силовой лонжерон, поскольку лопасть в этой части обтекается на висении и малых скоростях полета воздушными потоками с небольшими скоростями, а при средних и больших скоростях отступающие лопасти обтекаются со стороны задней кромки, что может вызвать увеличение переменных нагрузок, действующих на лопасти. Поскольку перед конструктором постоянно стоит задача увеличения тяговых характеристик на режиме висения и малых скоростях полета и снижения нагрузок, действующих на несущую систему, то в ЛИИ совместно с МВЗ были проведены летные исследования по оценке влияния корневого заполнения на максимальную тягу, расходы топлива и переменные нагрузки в несущей системе вертолета Ми-6. Эти характеристики последовательно определялись с исходным вариантом серийных лопастей и после установки на них дополнительных несущих отсеков, закрывающих лонжероны в корневых частях лопастей. При установке дополнительных несущих отсеков в корневой части лопасти, в результате чего начальный относительный радиус несущей поверхности уменьшается с r= 0,2 до r = 0,1, тяга вертолета Ми-6 при висении вблизи земли заметно возрастает. Так, на высоте висения 6-10 м, с которой обеспечивается взлет по-вертолетному, увеличение тяги равно примерно 1750 кг, что составляет почти 30% от платной нагрузки вертолета Ми-6 (6000 кг). При висении на высотах вне «воздушной подушки» увеличение тяги заметно меньше. Расходы топлива при увеличении корневого заполнения уменьшаются на 5%, а характеристики нагружения несущей системы и систем управления вертолета практически не изменились. Учитывая значительное увеличение тяги и уменьшение расходов топлива, что повышает грузоподъемность вертолета Ми-6, было принято решение об установке на серийные лопасти вертолета дополнительных отсеков в корневой части.
Создание вертолетов большой грузоподъемности связано с необходимостью разработки несущего винта больших размеров, что представляет собой весьма сложную инженерно-техническую задачу. Поэтому среди ученых и конструкторов возникали предложения по созданию двухвинтовых вертолетов вдвое большей грузоподъемности на базе соединения двух освоенных на одновинтовых вертолетах несущих винтов. В частности, по такой концепции был разработан вертолет продольной схемы Як-24, на котором несущие винты, автоматы перекоса, главные редукторы, двигатели и другие агрегаты были по конструкции такие же, как у одновинтового вертолета Ми-4. Этот вертолет имел вдвое большую грузоподъемность, однако все другие летные характеристики: скороподъемность, практический потолок, топливная эффективность, крейсерская и максимальная скорости полета, потребные размеры взлетно-посадочных площадок и др. – у нового вертолета были значительно хуже, чем у вертолета Ми-4.
При разработке тяжелого вертолета В-12 также выдвигалась идея построить двухвинтовую машину с продольным расположением винтов, по размерам близким винту вертолета Ми-6. Однако проработанный по продольной схеме вариант вертолета В-12 по большинству характеристик не удовлетворял требованиям заказчика. Негативный опыт реализации этой идеи заключался в основном в неизученности взаимного индуктивного влияния пары несущих винтов, расположенных по схеме «тандем». Поэтому по предложению М.Л. Миля в ЛИИ в 1957 году были проведены летные исследования с измерением потребных мощностей винтов вертолета Як-24, а позднее аналогичные исследования были проведены для вертолета V-44.
Исследования показали, что вследствие сильного индуктивного влияния крутящий момент заднего винта значительно превосходит крутящий момент переднего винта. Так, в большом диапазоне скорости, включая скорости от μ = 0,1 до ?μ = 0,25, потребный Мк у заднего винта почти в два раза больше, чем у переднего винта. Аналогичный результат получен и для вертолета V-44. По зависимостям mк = ?(?) для обоих винтов определен коэффициент взаимного влияния переднего винта на задний, который показывает, насколько среднее приращение индуктивной скорости в плоскости вращения заднего винта больше его собственной индуктивной скорости. Это приращение индуктивной скорости практически на всех режимах в два раза превышает собственную индуктивную скорость заднего винта. Поэтому при одинаковых размерах винтов практически все летные данные в полете с поступательной скоростью у вертолета продольной схемы при вдвое большей полетной массе и мощности двигателей будут значительно хуже, чем у вертолета одновинтовой схемы. Кроме того, переменные нагрузки, действующие в несущей системе заднего винта, значительно выше, что создает большие технические трудности в обеспечении ресурса лопастей, редуктора, подредукторной рамы и силовой части системы управления заднего винта. Эти результаты исследований использованы при разработке тяжелого вертолета В-12 поперечной схемы.
Известно, что теоретические методы расчета не обеспечивают определение с удовлетворительной точностью аэродинамических характеристик несущих винтов на ряде режимов полета вертолета. К числу таких режимов относится полет на малых высотах (0-50 м) вблизи поверхности земли, на которых отмечается значительное индуктивное влияние этой поверхности как экрана на аэродинамические характеристики несущего винта. По предложению МВЗ в ЛИИ были проведены летные исследования влияния земли на максимальную тягу и потребную мощность несущего винта одновинтового вертолета. Для получения количественных данных особое внимание в летных исследованиях было уделено обеспечению высокой точности измерения тяги вертолета, крутящего момента винта, высоты и воздушной скорости полета.
По результатам измерений величин T, M, h и V на режимах горизонтального полета были определены зависимости относительного изменения тяги T и потребной мощности N несущего винта от высоты полета для ряда значений воздушной скорости. Большой положительный эффект «воздушной подушки» проявляется до относительных высот полета, равных 1-1,2 диаметра несущего винта D и до значительных скоростей полета (около 100 км/ч). Наибольшее уменьшение потребной мощности винта на режиме висения при уменьшении удаления плоскости винта от поверхности земли h/D от 1,2 до 0,25 составляет около 25%. С увеличением скорости это влияние близости земли на аэродинамические характеристики винта заметно ослабевает. Соответствующим образом увеличивается тяга винта вертолета при N = const.
Полученные данные по влиянию близости земли на аэродинамические характеристики несущего винта используются при определении взлетно-посадочных характеристик и при проведении летных испытаний вертолетов.
Академик М.Н. Тищенко вручает диплом почетной лекции А.И. Акимову
При выборе типов несущих систем вертолетов при проектировании и выполнении аэродинамических расчетов постоянно возникает вопрос о балансе мощности и определении различных потерь мощности на вертолете и, в частности, потерь на компенсацию крутящего момента несущего винта и путевое управление. В зависимости от схемы вертолета эти потери могут изменяться от 0 (двухвинтовые вертолеты) до 25% потребной мощности несущего винта (одновинтовые вертолеты). Поэтому является актуальным определение затрат мощности на работу хвостового устройства на одновинтовом вертолете. Вертолет Ми-8 был оборудован измерительной аппаратурой, позволявшей определить одновременно крутящие моменты несущего и рулевого винтов и другие параметры.
Посредством этой аппаратуры удалось определить, что на режиме висения потери мощности на вращение рулевого винта составляют примерно 10% от потребной мощности несущего винта, а с увеличением скорости полета резко уменьшаются и в диапазоне от 70 км/ч до Vmax составляют 3-4%. Это свидетельствует о том, что рулевой винт является наиболее экономичным среди других устройств компенсации крутящего момента несущего винта. Исследования показали, что расчет потерь мощности по рекомендациям Руководства для конструкторов (РДК) существенно отличался от экспериментальных данных, что потребовало внести уточнение в методику расчета Nра .
При создании новых вертолетов одной из основных задач является правильный выбор параметров несущего винта, при которых обеспечивается нормальная работа несущей системы без чрезмерного роста потребной мощности и переменных нагрузок в агрегатах. По имевшимся на этапе становления отечественного вертолетостроения теоретическим данным выбор параметров несущего винта рекомендовалось производить по предельно допустимому по срыву потока на азимуте 270° среднему коэффициенту подъемной силы лопасти винта при заданном значении V = V/ωR. Вследствие отсутствия обоснованного критерия допустимости предельного режима полета по максимальной величине коэффициента тяги винта и относительной скорости такая методика не удовлетворяла требованиям практики проектирования и проведения летных испытаний вертолетов. По этой методике можно было получить принципиально неверный результат, например, о возможности создания вертолета с максимальной скоростью полета 500-600 км/ч. Для этого достаточно обеспечить малый средний коэффициент подъемной силы на заданной скорости полета.
По инициативе М.Л. Миля в ЛИИ были поставлены и проведены летные исследования по определению предельной несущей способности винтов вертолетов. В этих исследованиях зоны срыва потока на винте определялись киносъемкой спектров обтекания с помощью наклейки шелковинок на лопастях. Одновременно определялись переменные шарнирные моменты и напряжения, действующие в лопастях, а также вибрации вертолета. Исследования показали, что по мере увеличения зон срыва потока на диске несущего винта при некотором значении V начинается интенсивный рост переменных составляющих шарнирных моментов, а следовательно, и усилий в системе управления и рост переменных нагрузок в элементах конструкции винта. Критерием допустимости режима полета является начало интенсивного роста переменных нагрузок, что вызывает необходимость введения ограничений по предельному значению коэффициента тяги Ст/? и относительной скорости V. В этих исследованиях были получены два новых важных вывода. Во-первых, положительное влияние на предельную несущую способность винта оказывает угловая скорость вращения вертолета на кабрирование. Во-вторых, предельная несущая способность винта ограничивается также достижением трансзвуковых значений числа М = 0,8-0,9 воздушным потоком на наступающей лопасти ? = 90°. Учитывая важность этих данных, при разработке вертолетов и проведении летных испытаний предельную несущую способность винтов определили практически для всех отечественных вертолетов.