Век XX Чем завершается тысячелетие...


Век двадцатый кончается на Земле почти так же, как он начинался: среди бурного прогресса науки, на фоне хрупкого политического мира и неуклонного экологического кризиса техногенной земной цивилизации. За полвека, истекшие с конца Второй мировой войны, земляне вырвались в космос. Космонавты уже слетали на Луну; автоматический зонд «Вояджер» сфотографировал в упор все большие планеты и многие луны Солнечной системы. Кто бы мог угадать, что на двух из них — возле Юпитера и Нептуна — приливные волны порождают мощный вулканизм! Серные вулканы на Ио; азотные гейзеры на Тритоне; потрескавшиеся ледяные зеркала на Европе, Уране и Нептуне; бездонный облачный хаос на Сатурне и Юпитере, только что проглотившем очередную комету... Дивно сложный рисунок колец Сатурна, где воплотились Странные Аттракторы, 20 лет назад угаданные математиками. Мощное радиоизлучение Юпитера и Сатурна возвело их в ранг холодных звезд: ведь они излучают в космос больше энергии, чем получают от Солнца!

Кстати, и Земля в некоторых длинах волн уступает в яркости только Солнцу: такова мощность глобальной системы телевещания со спутников!


Космический корабль

Такой всплеск энергетики предполагает быстрый расход земных энергоносителей. Похоже, что всех доступных ресурсов нефти и газа землянам хватит не более чем на сто лет! Угля и нефти хватит надолго — но их эксплуатацию нельзя увеличить более чем в 10 раз. Давняя надежда на термоядерный реактор все никак не сбудется: слишком велики трудности в управлении неустойчивым плазменным шнуром среди магнитных полей! И слишком велико число стран, уже овладевших ядерным оружием либо готовых обрести его в ближайшие годы! Индия и Пакистан, Израиль и Иран — все эти соседи-враги норовят взять друг друга на прицел так же, как это сделали СССР и США 40 лет назад...

А теперь еще СССР распался, породив экономический хаос на одной трети Евразии и столь же опасное зазнайство правителей одной трети Северной Америки. Что им вулканы возле Юпитера или первые планеты за пределами Солнечной системы! Раз не сумели ученые мужи создать гамма-лазер, заряжаемый атомным взрывом и способный из космоса мигом сжечь Пентагон или Байконур, значит, не стоит финансировать новые прогулки по Луне или очередной ускоритель протонов!

Так уходит в прошлое «дорогая» наука, вызванная к жизни многолетней гонкой вооружений среди великих держав и воспетая научными фантастами. Из задних рядов партера опять выходит вперед «дешевая» наука, чьи расходы составляют не миллиарды, а миллионы (порою — даже тысячи) долларов в год. В пересчете на золото или на киловатт-часы это все же больше, чем тратили сто лет назад Пастер и Рентген, Пуанкаре и Эйнштейн, Эдисон и братья Райт!

В чем и насколько превзошли своих пращуров физики и математики конца ХХ века? Рентген знал лишь три сорта элементарных блоков материи: фотон, электрон и протон. И только два вида их взаимодействий: тяготение и электромагнетизм. Сто лет спустя физикам знакомо около 20 сортов элементарных частиц, четко разделенных на классы по двум признакам: по их внутренней симметрии (спиноры, векторы, тензоры, скаляры) и по типам взаимодействий, в которых они участвуют. Типов сил четыре, и, как выяснилось недавно, разделились все типы довольно рано, вскоре после Большого Взрыва Вселенной. Причиной разделения сил была последовательная конденсация и кристаллизация облаков виртуальных частиц, заполняющих вакуум.

Например, фотон и порождаемое им электромагнитное взаимодействие частиц отделилось от слабого взаимодействия благодаря конденсации «облака Хиггса», чьи скалярные кванты сейчас имеют огромную массу: раз в 1000 больше массы протона! В Солнечной системе и во всей Галактике свободных скаляров Хиггса сейчас, вероятно, нет. Но их можно создать искусственно — на достаточно мощном ускорителе протонов... Может, это и удастся сделать на новом европейском ускорителе, который должен заработать в текущем году. Кто знает...

На ускорителях предыдущего поколения были синтезированы кванты слабого взаимодействия: их масса в 100 раз больше, чем у протона! Наблюдая распады «слабых» квантов, физики узнали, что в природе есть только три сорта нейтрино и потому лишь 6 сортов кварков, участников сильного взаимодействия. Почему именно 3 и 6? Для теоретиков это тайна, а экспериментаторы о ней и думать не хотят. Кому охота сочинять внутринаучную фантастику?

Вот если бы удалось экспортировать накопленные физиками гипотезы в некую соседнюю область, где сходные гипотезы поддаются опытной проверке... Но где возможно такое чудо? Вероятно, в загадочном мире неустойчивых, развивающихся систем: в особой вселенной по имени Жизнь! Каких успехов достигли ее следопыты к концу ХХ века?

Джеймс Уотсон и Франсис Крик, 1953 г.


Компьютерная биохимия ДНК: так вернее всего назвать совокупность новых методов работы молекулярных биологов и генетиков. Открыв 30 лет назад особый фермент — ревертазу, способную разрезать нить ДНК или РНК в заданных химических точках, Говард Темин и его коллега Балтимор положили начало генной хирургии или инженерии. С тех пор инженеры- генетики обрели возможность «редактировать» гигантские тексты молекул ДНК почти так же свободно, как программист читает и редактирует на экране компьютера текст неудачной программы на языке АЛГОЛ.

С одной заметной разницей: природный язык ДНК за 4 миллиарда лет биоэволюции усложнился настолько, что его можно сопоставить с любым современным человеческим языком — будь то английский или русский, китайский или аймара. И тексты генома уж очень длинные: миллионы букв — у бактерий, миллиарды — у человека. Даже выписать их в одну строку — колоссальная работа, невыполнимая без самых мощных компьютеров. Только что очередной компьютерный гений Крейг Вентер заявил, что он научился читать генные тексты в тысячи раз быстрее, чем это делалось в эпоху Крика и Ниренберга!

Если так пойдет дальше, то к концу второго тысячелетия христианской эры люди выпишут по буквам всю свою наследственную память!

Потом придется ее читать с большой натугой, ибо 95% нити ДНК почему-то вовсе не используется в развитии живой клетки. Как будто природа скупилась вырезать и выбрасывать черновики своей эволюции: миллионы генов, важных для водорослей или трилобитов, папоротников или динозавров!

У многих палеонтологов загорелись глаза. Похоже, что в геноме человека можно выделить куски генома всех его предков! Будь то первые млекопитающие или первые амфибии, первые вторичноротые среди многоклеточных или первые бактерии... Видимо, у них всех был общий ЯЗЫК генома: он поныне отличается от языка бактерий не больше, чем русский язык — от санскрита. Надо только научиться читать десятки тысяч базовых слов этого языка, называемых генами человеческого или дрозофильего организма...

A. Эйнштейн, Ф. Айделот, B. Освальд, М. Морс


Эта задача кажется вполне разрешимой. Сумели же сто лет назад ассириологи разобраться в огромном, но цельном кирпичном архиве царя Ашшурбанипала! У них не было компьютеров, у нас они теперь есть; авось, мы реконструируем геном и фенотип трилобитов и динозавров по ДНК дрозофилы и страуса гораздо лучше, чем это сделали палеонтологи по окаменелым отпечаткам древних членистоногих и ящеров!

Может быть, и так; но биологи хотят знать и понимать больше, чем записано в сухом конспекте генома нынешних животных. Хорошо бы переосмыслить и проверить теоретическое наследие Ламарка и Дарвина в такой же мере, как уже проверены и превзойдены генетические открытия Менделя! Как произошли слоны и мамонты от свиноподобных пращуров? Как получились цветковые растения из древних голосеменных или из совсем древних «семенных папоротников»? На каком общем языке идет миллиардолетний диалог между генотипом живых организмов и динамичной средой их обитания? Вот, физики восстановили ход Большого Взрыва Вселенной по его нынешнему продукту. Биологи хотят сделать то же самое со своей биосферой... Корректна ли эта задача или она не имеет однозначного решения? Какие математические средства нужны для восстановления хода неустойчивых процессов по их исходам? Здесь не обойтись дифференциальными уравнениями Ньютона и комбинаторикой Бернулли! Те богатыри и их наследники навели порядок в исчислении функций и чисел. Теперь нужно с такой же легкостью исчислять многообразия — самые общие геометрические фигуры, составленные из решений произвольных уравнений. Готовы ли геометры в конце ХХ века к такой сверхзадаче?

Да, они готовы. С тех пор как в 1930 году Марстон Морс составил клеточную модель произвольного многообразия, а к 1970 году его наследники завершили классификацию любых многообразий по их алгебраическим инвариантам. По группам гомологий и гомотопий (их ввел еще Пуанкаре), по касательным пучкам и классам бордизмов. Этим триумфом завершилось построение топологии; наступает ее применение во всех областях математики и физики.

Двенадцать лет назад молодой немец Герд Фальтингс успешно использовал строение алгебраических многообразий для доказательства давней гипотезы Морделла о рациональных решениях уравнений высших степеней. Из теоремы Фальтингса следовали интересные прогнозы насчет решений знаменитого уравнения Ферма: в высоких степенях множество таких решений, конечно. Может быть, оно даже пусто, как предположил Ферма? Новый дерзкий немец Герхард Фрай заметил, что гипотезу Ферма во всей ее полноте можно вывести из недавней гипотезы Танияма о модулярных формах. Да вот беда: никому не удается доказать гипотезу смелого японца! То ли она неверна, то ли алгебраическая молодежь не приложила к ней должных усилий, то ли недостаточна топологическая грамотность этой молодежи.

Прошло семь лет, и сорокалетний британец Эндрю Уайлз первым пришел к финишу марафона. Гипотеза Танияма доказана. Вместе с ней доказана Большая теорема Ферма. Что делать дальше?

Лев Гумилев


Умственный взор математиков пленяют два светлых образа: гипотеза Пуанкаре о трехмерной сфере (ей от роду 90 лет) и гипотеза Римана о дзета-функции: ей 140 лет. Кто только за них не брался! Пока без успеха. Не потому ли, что не хватало мастерства в сочетании трех главных математических исчислений: алгебры, анализа и топологии? Сколько десятилетий понадобится новым математикам для ускоренного синтеза этих ветвей?

До победы над гипотезой Пуанкаре осталось 10 лет. За нее уже взялся молодой питерский отшельник Григорий Перельман. Опираясь на прежние достижения Вильяма Тёрстона и Ричарда Гамильтона, вчерашний выпускник славного математического лицея «Анненшуле» старается сгладить неприятные особенности трехмерного многообразия с помощью классических потоков Риччи. К 2005 году ему это удастся. Григорий Перельман станет шестым в ряду российских лауреатов премии Филдса — и первым в мире, кто откажется ее получать! Ибо не ради премии он старался — но ради высшей Истины, которая требует внутренней скромности... Это рассуждение поймет любой монах и, возможно, каждый десятый ученый. Включая Ньютона и Римана, Эйнштейна и Нильса Бора.

Кто сумеет повторить подвиг Терстона, Гамильтона и Перельмана применительно к математической гипотезе Римана? Или к физической гипотезе Льва Гумилева о пассионарности как главном движителе эволюции человечества? Ахиллесовой пятой великого Льва (умершего три года назад) было полное незнание им теоретической физики и высокой математики своего времени. Действительно: в российской глубинке 1920-х годов этим вещам никого не учили! Вот и не умел волшебник Гумилев отличать энергию от действия, а вариационное исчисление — от обычной алгебры. Для мудрых физиков и математиков он был невежда и полузнайка. Почему же они толпой валили на его публичные лекции и не жалели о таком общении с гуманитарным мэтром?

Да потому, что Лев Гумилев говорил с физиками и математиками об истории как о физике социума! Только не пользуясь понятиями «интеграл» или «атом Бора», которыми самобытные историки свободно не владеют. Жизнь Льва Гумилева превратила историю для источниковедов в историю для осмысливателей и моделистов. Немудрено, что физматики охотно ворвались в эту брешь в стене вековой крепости гуманитариев! Скоро ли среди удачливых десантников вырастут хозяева ситуации — вроде математиков Уайлза и Перельмана?

От смерти Менделя до первых успехов Моргана в картировании генов дрозофилы прошло четверть века. Если так же будет с наследием Льва Гумилева, то строгое исчисление политических новинок (древних и современных) появится около 2020 года. Или раньше, если учесть необычную популярность книг Гумилева в нынешнем российском обществе. А когда новая физико-математическая идеология пассионариев перешагнет от политической эволюции человечества к генетической эволюции биосферы?

Это может случиться очень быстро: ведь экспорт физической революции в биологию и в политологию ведут одни и те же люди. От тесной дружбы и совместной осады обеих природных крепостей — живой и социальной — их удерживает лишь одно сомнение. Могут ли быть изоморфны механизмы биологической и социальной эволюции, если их скорости различаются в 1000 раз? Ведь новые виды в биосфере возникают с интервалом в миллионы лет, а новые народы и цивилизации в старых Ойкуменах — за сотни лет... И еще: нам легко вообразить человека-пассионария, благо каждый встречал таких героев в литературе и в жизни. Но где можно найти «пассионарного» воробья, или сосну, или бактерию? Как их отличить от большинства их «гармоничных» собратьев?

По внешности они неразличимы — так же, как не отличить по портрету пассионарного Чингиз-хана от его гармоничного сына Угэдэя. Различны лишь плоды их деятельности. Социальный либо биологический пассионарий явно доминирует над соседями- гармониками через свои «гены»: либо культурные (это ценности и понятия), либо биологические (сиречь, отрезки ДНК). Именно вакханалия и чехарда доминант выделяет пассионарную вспышку на фоне равновесной жизни социума или биосферы. Раньше всем было ясно: что можно и чего нельзя, кто умнее или сильнее. А нынче пассионарный пастух свергает унылого хана, занимает его место и успешно правит племенем. Дикообразный мутант среди дрозофил не вымирает (как положено уроду), но порождает из своих потомков новую расу или вид, а то и род, семейство, отряд, класс... Могут ли математики или физики описать это чудо на своем языке?

Да, теперь они это могут. Если изобразить биографии пассионариев траекториями экстремального (не минимального) действия, то их культурный эффект легко объяснить на языке топологии многообразий и представлений групп. Вызвать экстремальные траектории из небытия способна любая природная флуктуация (удар, скачок температуры). Бурный ХХ век был щедр на подобные толчки и подзатыльники человечеству. Вот и выросло среди землян замечательное ученое сообщество; теперь оно начинает понимать, как и почему оно выросло. И что делать дальше, чтобы интеллектуальный пир людей не прервался, но и человечество не вымерло бы от самоистребления...

Тогда вечный вопрос о возможном и невозможном в обществе или биосфере станет таким же понятным и увлекательным, как игра в шахматы и в геометрию.


СУММА ТЕХНОЛОГИЙ

Руслан Григорьев

Загрузка...