Статисти'ческое оце'нивание, совокупность способов, употребляемых в математической статистике для приближённого определения неизвестных распределений вероятностей (или каких-либо их характеристик) по результатам наблюдений. В наиболее распространённом случае независимых наблюдений их результаты образуют последовательность
X1 , X2 ,..., Xn ,... (1)
независимых случайных величин (или векторов), имеющих одно и то же (неизвестное) распределение вероятностей с функцией распределения F (x ). Часто предполагают, что функция F (x ) зависит неизвестным образом от одного или нескольких параметров и определению подлежат лишь значения самих этих параметров [например, значительная часть теории, особенно в многомерном случае, развита в предположении, что неизвестное распределение является нормальным распределением , у которого все параметры или какая-либо часть их неизвестны (см. Статистический анализ многомерный )]. Два основных вида С. о. — т. н. точечное оценивание и оценивание с помощью доверительных границ . В первом случае в качестве приближённого значения для неизвестной характеристики выбирают какую-либо одну функцию от результатов наблюдений, во втором — указывают интервал значений, с высокой вероятностью «накрывающий» неизвестное значение этой характеристики. В более общих случаях интервалы, образуемые доверительными границами (доверительные интервалы), заменяются более сложными доверительными множествами.
О С. о. функции распределения F (x ) см. Непараметрические методы в математической статистике; о С. о. параметров см. Статистические оценки .
Разработаны также методы С. о. и для случая, когда результаты наблюдений (1) зависимы, и для случая, когда индекс n заменяется непрерывно меняющимся аргументом t, т. е. для случайных процессов . В частности, широко используется С. о. таких характеристик случайных процессов, как корреляционная функция и спектральная функция. В связи с задачами регрессионного анализа был развит новый метод С. о. — стохастическая аппроксимация . При классификации и сравнении способов С. о. исходят из ряда принципов (таких, как состоятельность, несмещенность, инвариантность и др.), которые в их наиболее общей форме рассматривают в Статистических решений теории .
Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975; Рао С. Р., Линейные статистические методы и их применения, пер. с англ., М., 1968.
Ю. В. Прохоров.
Канал с обзорами, анонсами новинок и книжными подборками
Книжный ВестникБот для удобного поиска книг (если не нашлось на сайте)
Поиск книгСвежие любовные романы в удобных форматах
Любовные романыО психологии, саморазвитии и личностном росте
СаморазвитиеДетективы и триллеры, все новинки
ДетективыФантастика и фэнтези, все новинки
ФантастикаОтборные классические книги
КлассикаБиблиотека с любовными романами, которая наверняка придётся по вкусу женской части аудитории
Любовные романыБиблиотека с фантастикой и фэнтези, а также смежных жанров
ФантастикаСамые популярные книги в формате фб2
Топ фб2 книги