Стеклов Владимир Андреевич

Стекло'в Владимир Андреевич [28.12.1863 (9.1.1864), Нижний Новгород, ныне Горький, — 30.5.1926, Крым, похоронен в Ленинграде], советский математик, академик. (1912; член-корреспондент 1902). В 1919—26 вице-президент АН СССР. В 1887 окончил Харьковский университет, где учился у А. М. Ляпунова . В 1889—1906 работал на кафедре механики в Харьковском университете, сначала в качестве ассистента, затем приват-доцента (с 1891) и профессор (с 1896). В 1893—1905 был преподавателем теоретической механики Харьковского технологического института. В 1894 защитил магистерскую диссертацию «О движении твердого тела в жидкости» (изд. 1893), а в 1902 — докторскую диссертацию «Общие методы решения основных задач математической физики» (изд. 1901). В 1906 С. перешёл на работу в Петербургский университет. Вёл большую общественную и научно-организационную работу, особенно в последние годы жизни. По его инициативе организован при АН Физико-математический институт (в 1921), директором которого он состоял до конца своей жизни. В 1926 имя С. было присвоено Физико-математическому институту, который в 1934 разделился на два института (один из них — Математический институт АН СССР сохранил имя С.).

Основные направления научного творчества С. — приложения математических методов к вопросам естествознания; большая часть его работ относится к математической физике. С. получил ряд существенных результатов, касающихся основных задач теории потенциала. Для функций, обращающихся в нуль на границе области, С. вывел функциональное неравенство типа неравенства Пуанкаре с точной константой. Большинство работ С. посвящено вопросам разложения функций в ряды по наперёд заданным ортогональным системам функций , обычно к таким системам приводят краевые задачи математической физики. В основе этих исследований лежит введённое С. понятие замкнутости системы ортогональных функций. С. вплотную подошёл к понятию гильбертова пространства . При исследовании вопросов разложений в ряды С. развил асимптотические методы, среди которых — метод получения асимптотических выражений для классических ортогональных многочленов, называемый методом Лиувилля — Стеклова. Установленные С. теоремы о разложимости в обобщённый ряд Фурье весьма близки к т. н. теоремам «равносходимости». С. ввёл особый метод сглаживания функций, который затем получил большое развитие (см. Стеклова функция ). С. — автор ряда работ по математическому анализу, в частности по теории квадратурных формул, а также по теории упругости и гидромеханике. С. известен как историк математики, философ и писатель. Ему принадлежат книги научно-биографического характера о М. В. Ломоносове и Г. Галилее, очерки и статьи о жизни и деятельности П. Л. Чебышева, Н. И. Лобачевского, М. В. Остроградского, А. М. Ляпунова, А. А. Маркова, А. Пуанкаре, Дж. Томсона и др., работа по философии «Математика и её значение для человечества» (1923), а также книга «В Америку и обратно. Впечатления» (1925).

Лит.: Памяти В. А. Стеклова. Сб. ст., Л., 1928 (лит.); Смирнов В. И., Памяти Владимира Андреевича Стеклова, «Тр. Математического института им. В. А. Стеклова», 1964, т. 73; Игнациус Г. И., Владимир Андреевич Стеклов, М., 1967; Владимиров В. С., Маркуш И. И., Академик В. А. Стеклов, М., 1973 (лит.).

В. С. Владимиров.

В. А. Стеклов.

Загрузка...