Из клеток состоит все живое — от водоросли до человека. А между тем знания наши о жизненном атоме пока не слишком велики. Самое обидное то, что, обладая обширными знаниями о составе и строении клетки, о распределении обязанностей между ее составными частями, мы особенно мало знаем о химических и биохимических процессах, лежащих в основе ее работы. Одна из причин, пожалуй, — отсутствие обобщающей свойства всех клеток модели. Механика знает упрощенные модели своих подопечных — физических тел; небоскреб современной физики, как ни странно, сужается книзу, но от этого не становится менее устойчивым — в его фундаменте разнообразнейшие модели атома. Точнее, самого простого из атомов — водородного. Модели других атомов, естественно, сложнее, как сложнее и сами атомы. Но водородный атом — та печка, от которой проще всего танцевать. Клетка, бесспорно, играет роль той же печки в биологии. Но какую клетку взять за образец? Специализированную или разностороннюю? Растительную или животную? Гигантскую клетку — яйцо страуса — или красный кровяной шарик, каких в каждом из нас миллиарды?
Задача становится еще труднее потому, что клетка в определенном смысле слова значительно сложнее атома. Прежде всего она живет, она непрерывно меняется. Приказать этой жизни остановиться? Но ведь именно она нас и интересует!
Математическую модель клетки решили построить В. В. Чавчанидзе и сотрудник его института К. С. Квинихидзе. Так как они кибернетики, то их прежде всего занимала проблема повторения сигнальной системы в клетке. В организме человека главную роль играют сигналы, идущие по нервам. В отдельной клетке нет специальной сети проводников для передачи сигналов. Роль связных, несущих приказы и донесения, должны играть группировки атомов и молекул, перемещающиеся внутри клетки.
Клетку, конечно, куда легче разбить, чем атом. Но если искусственно разбитый атом распадается обычно на два более легких, то клетка часто гибнет. А в условиях, не вызывающих немедленную гибель, клетка поддерживает внутри себя равновесие, сохраняет присущую ей структуру и внутренний порядок. Это можно объяснить только тем, что в ней поддерживается равновесие сил, действующих на внутриклеточные частицы. Какие же это силы?
Здесь надо попросить прощения у биологов. Чавчанидзе — кибернетик и физик — решил принять во внимание прежде всего наиболее вероятно действующие здесь силы — и такие, чтобы они подчинялись строгим законам физики. Одна из них — то, что в учебниках называют броуновским движением. Каждую внутриклеточную частицу, каждую группу атомов или молекул подталкивают беспорядочно движущиеся в жидкой цитоплазме молекулы. Их удары сыплются на частицу со всех сторон, они не направлены. Результат этих ударов — броуновское движение частицы — бесспорно, подчиняется статистико-вероятностным закономерностям. Сила движения молекул не единственная, принимающая участие в этой игре. Чавчанидзе и Квинихидзе предложили рассматривать сами частицы или значительную часть их как носителей электрического заряда. О том, что это предложение обосновано, говорят результаты некоторых научных исследований последнего десятилетия. Роль электрически заряженных образований в клетке еще не совсем ясна; но сейчас не она, собственно, интересовала грузинских ученых, а только силы, вызванные самим присутствием в клетке этих образований.
Сколько их может быть в каждой клетке, зависит от клетки. Но в простейшей модели можно принять, что мы имеем дело всего с 20 ионами — и половина из них положительна, другая отрицательна. Такое равенство необходимо — ведь надо принимать, что клетка в целом нейтральна.
Как эти ионы расположены в нашем биологическом атоме? Да как угодно! Это уж дело случая. А им занимается, как известно, метод Монте-Карло. Итак, с помощью розыгрыша ученые находят сотни возможных положений 20 ионов. И в случайностях их распределения властно проявляется необходимость: при любом расположении ионов центры групп положительных и отрицательных ионов не совпадали. Значит, у клетки были два электрических полюса, значит, она сама представляла собой диполь. Кстати, обе части предыдущего предложения совершенно совпадают по смыслу. В точном переводе с греческого диполь и означает: имеющий два полюса.
Но после того, как ионы оказались размещенными в случайно избранном порядке, им полагалось начать взаимодействовать друг с другом. Разноименные заряды притягиваются. Беспощадная сила, именуемая законом Кулона, тянула положительные ионы к отрицательным. И не будь здесь никаких других сил, дело очень быстро закончилось бы взаимоуничтожением зарядов, а следовательно, гибелью клетки — в лице ее математической модели.
Но тепловое движение молекул в этой модели тоже не было забыто. Если электрическое притяжение заставляет ионы сближаться, то удары молекул не дают им довести сближение до конца. Расчет показал, что после многочисленных перемещений под противоборствующими влияниями двух сил ионы возвращаются к положениям, случайно занятым первоначально в результате розыгрыша. Разумеется, для того чтобы вновь покинуть их.
Все значение модели грузинских кибернетиков в том, что она показала, как может сохраняться динамическое равновесие при борьбе сил, действительно проходящей в клетке. Надо добавить, что модель была ближе к неподдельной клетке, чем могло показаться по этому описанию. В ней были предусмотрены и внешняя оболочка, и ядро, и оболочка между ядром и остальной клеткой. Вещество ядра было признанным имеющим большую вязкость, чем жидкость периферии клетки. Ионы без помех, без столкновений проходили расстояния, примерно равные радиусу ядра. Было принято во внимание, что, по последним данным, «столица» и «провинция» клетки ведут постоянный обмен веществом (для этого в ядерной оболочке существует масса пор и протоков). Так вот, и здесь ионы могли проникать и в ядро. Но внутри него из-за большей вязкости вещества двигались медленнее.
У этой модели клетки большое будущее. Ей ведь есть куда развиваться, есть за счет чего усложняться, приближаясь к своему оригиналу. Ведь можно и нужно учесть то, что в клетке число ионов гораздо больше, что ядро далеко не единственная составная часть клетки, что каждая клетка связана с другими и обмен веществ идет не только внутри нее, но и между клетками.