В принципе моделью может быть чуть ли не все на свете — от человека до Галактики, от манекена до колонки цифр. Но слово «может» само по себе говорит только об одной стороне дела. Не все, что может быть моделью, оказывается ею на самом деле. Неудачный, непохожий портрет — уже не портрет человека, с которого он как будто сделан. По портрету нельзя судить о внешности оригинала. Ну, а если во всей его внешности нас интересуют только характерные очертания уха и есть уверенность, что они переданы правильно? Портрет от этого вернее не станет.
Но с моделью в аналогичном случае дело обстоит иначе. Только необходима оговорка; что данная модель представляет собой уподобление лишь определенной стороне своего объекта.
Выражение «в аналогичном случае», вероятно, и сами вы не раз употребляли. А чем вы руководствуетесь, объявляя один случай аналогичным другому? Аналогичный по-гречески означает «соответственный», «сходный», «подобный». А как вообще узнать, какие два предмета, явления, процесса можно связать словом «подобие»? Что же, на то существует специальный раздел науки — большая, разветвленная и очень важная теория подобия.
Но прежде чем углубляться в нее, заглянем в как будто далекую от науки область — в поэзию. Вспомните у Лермонтова:
С улыбкой, розовой, как молодого дня
За рощей первое сиянье.
У Маяковского:
Говоря по-нашему,
рифма — бочка.
Бочка с динамитом.
Строчка —
фитиль.
Строка додымит,
взрывается строчка,
и город на воздух строфой летит.
Перед нами — сравнение просто и сравнение, уже перерастающее в аллегорию, в иносказание. А вот и бесспорная аллегория в чистом виде:
И шестикрылый серафим
На перепутье мне явился.
Мне жребий вынул Феб,
И лира — мой удел.
Аллегория — иносказание, то, что надо понимать не буквально, а в переносном смысле. Поэзия смела, как поэзия. Ей мало прямого смысла и текста, она заставляет понимать смысл переносный.
Не боясь, что ее не поймут, она заменяет одни слова и предметы другими. Сопоставляя и сравнивая, заменяя привычное непривычным, сложное — простым, обыденное — высоким (и наоборот), она посредством художественного образа стремится к точности выражения чувства, добивается истинности передачи мысли. Волны шепчут, сердце поет, музыка говорит — и мы не возмущаемся всеми этими «несообразностями», явно невозможными на самом деле. Больше того, эти выражения успели перейти из литературы в общеупотребительную речь, став штампами для самой литературы. Переносный смысл оказывается вернее и строже прямого.
Сравнение и иносказание — в числе тех камней фундамента, которые в конечном счете держат здание поэзии, да, быть может, и искусства вообще.
Так вот, теория подобия занимается как раз проблемами сравнения и иносказания. Нет, тема этой главы вовсе не моделирование литературой действительности. (Хотя сама проблема такого моделирования сейчас настойчиво исследуется литературоведами, лингвистами и представителями молодой науки семиотики, с некоторыми выводами которой вы познакомитесь в конце книги.) Разговор пойдет о сугубо технических вещах в том смысле, что применение себе они находят как раз в технике. Но само их существование лишний раз напоминает нам, что искусство и наука не отделены друг от друга непроходимой стеной, что лирика и физика — родные сестры, что обе они — дочери человеческого сознания и средства познания им мира. Родство их проявляется, между прочим, и в том, что обе они порою прибегают к одним и тем же приемам. Аллегория, иносказание, пусть его и называют иначе, — мощное средство исследования в науке и технике. Посудите сами, разве не подойдет под понятие «аллегория» замена электрона резиновым шариком, атомного ядра — каплей жидкости, воды в трубопроводе — потоком электронов в кабеле? Ну, а о терминах всегда можно договориться. Но, порадовавшись родству физики и лирики, мы не отделались от обязанности ответить на вопрос, что чему можно уподобить, что чем заменить, что чем промоделировать (здесь все эти три слова имеют примерно одно значение).
Так вот, теория подобия и взяла на себя обязанность отвечать на такие вопросы. Этот научный раздел не постеснялся широко раздвинуть пределы своей власти. В сферу его влияния, говоря языком политика, в разное время попали химия и сельское хозяйство, аэродинамика, теплотехника и гидравлика. Впрочем, практически нет уже сейчас раздела техники, в котором не прислушивались бы к ее голосу, определяющему, что удовлетворяет критериям подобия, а что нет.
Создание теории подобия растянулось на сотни лет. Начало ей положил… Знаете, я готов держать пари, что в основании почти любой современной области науки можно найти одно из четырех великих имен, принадлежащих греку, итальянцу, англичанину и русскому. Аристотель, Галилей, Ньютон и Ломоносов стояли у истоков многих разделов знания, представляющихся нам сегодня с иголочки новенькими. (Впрочем, теорию подобия новой не назовешь, зато некоторые ее применения более чем современны. Вспомните, что моделирование ведется главным образом на основе этой теории, а знаменитая бионика, по самой сути дела, лишь частный его случай.) Так о ком из четырех родоначальников наук идет речь? Здесь — о Ньютоне. В XVII веке он первым задумался над тем, какие явления могут считаться подобными, и сформулировал принципы подобия, ставшие краеугольным камнем здания, которому предстояло расти века.
Основы подобия механических процессов исследовал через двести лет французский ученый Бертран, доказавший первую теорему подобия. И в том же XIX веке очень много сделали для теории подобия на примере кораблестроения англичане Фруд и Рид.
В конце же XIX века теорией подобия занялся В. Л. Кирпичев, первый из представителей знаменитой семьи русских ученых, сумевших ввести теорию подобия хозяйкой в новые области техники. Сам Кирпичев-старший вывел условия подобия для ряда новых явлений.
Его сын, академик М. В. Кирпичев, доказал 3-ю теорему подобия — основу теории моделирования технических процессов вообще. Надо сказать, что очень много нового сумели ввести в теорию подобия и другие наши соотечественники в прошлом и настоящем. Но исторических справок в этой книге будет минимум. Перейдем к самой теории подобия.
Давайте начнем в той области, в которой слово «подобие» вам уже не раз встречалось в точной и не допускающем пререканий смысле, — с математики, конкретнее — с геометрии. Ведь сам этот термин должен был напомнить вам об одной добросовестно выученной теореме. Вот она:
«Два многоугольника подобны, если стороны одного пропорциональны сторонам другого, а углы между пропорциональными сторонами равны».
Итак, подобны друг другу все на свете квадраты. И все на свете окружности. И правильные шестиугольники. Разумеется, подобными бывают и тела — все кубы, например. Куб со стороной в километр абсолютно подобен кубу со стороной в микрон. Словом, подобны геометрически те фигуры, одну из которых простым общим увеличением или уменьшением размеров можно довести до полного равенства с другой.
А уж все формулы, по которым определяется, скажем, длина сторон или площадь граней, явно одинаковы для любой такой пары. Впрочем, у вас и раньше вряд ли возникало сомнение в том, что такие фигуры разрешается сравнивать друг с другом.
Когда великий английский сатирик Джонатан Свифт делал в своих путешествиях Гулливера великанов в 12 раз выше людей и в 1728 раз тяжелее, он строго соблюдал законы геометрического подобия. Однако для такого подобия вполне достаточно одной теоремы и не нужна целая теория. Но это ведь только простейший случай подобия. Не надо покидать пределы геометрии, чтобы наткнуться на одновременно более сложные и менее полные примеры подобия. Дело вот в чем. Квадрат, разумеется, не подобен вытянутому прямоугольнику, если исходить из только что процитированной теоремы. Но геометрия знает так называемое аффинное подобие, под правила которого и подпадает пара квадрат-прямоугольник. С точки зрения теории подобия квадрат может выступать в качестве представителя всех прямоугольников, потому что он подчиняется всем без исключения законам геометрии, действительным для прямоугольников, — это ведь только один их вид. Круг оказывается аффинноподобен эллипсу (правда, при условии, что этот эллипс можно некоторыми приемами, их и называют аффинными, превратить в круг).
Существует целый большой раздел математики, именуемый «аффинная геометрия», который и занимается величинами и геометрическими объектами, остающимися неизменными при аффинных преобразованиях. Но геометрия была для теории подобия только стартовой площадкой. И условности и правила подобия, выработанные математикой, были оставлены далеко позади в технике.
Здесь особенно часто приходится иметь дело с явлениями, в одно и то же время и однородными и отличающимися друг от друга, хотя бы в деталях. Исследовать каждое из них в отдельности? Что же, замечательный выход. Но опыты, во-первых, требуют огромного количества сил и времени, а во-вторых, не всегда возможны.
И тогда вместо бесконечного ряда явлений, предметов, процессов берут одно явление, один предмет или процесс. И это «одно» заменяет все остальные, представительствует, так сказать, от их лица, как один прямоугольник может представлять все аффинноподобные ему фигуры. Найденные для этого явления закономерности рассматриваются как общие и для однородных с ним — так формула определения площади одна для всех прямоугольников. Метод подобия оказывается методом обобщения, превращающим свойства одного предмета в свойства сотен других. «Превращающим» — слово это здесь не точно. Свойства одного объекта мы распространяем на все предметы того же рода.
Кроме того, теория подобия занимается выяснением степени родства между явлениями, ищет общее для внешне различных процессов. А родство тут может быть очень разным — и совсем близким и вроде седьмой воды на киселе.
Идеальное родство — абсолютное подобие — увы, вне математики обычно остается чистой абстракцией. Родство ближайшее — полное подобие. Его находят там, где все стороны одного процесса подобны соответствующим сторонам другого. Полное подобие, например, у двух двигателей одного типа.
Неполное подобие — подобие лишь между отдельными сторонами двух процессов (случай с ухом на портрете).
Есть и еще более дальнее родство — приближенное подобие, когда сходство между сторонами явлений оказывается весьма относительным.
Но в родстве-подобии ведется и иной счет — по природе уподобляемых друг другу процессов.
Когда говорят о физическом подобии двух процессов, это означает, что движению воды в трубе в одном из этих процессов соответствует движение воды в другой трубе, работе одного двигателя — работа другого двигателя и так далее.
А вот если речь идет об уподоблении математическом — значит, воду заменяет, скажем, движение электронов, а микроскопические взрывы бензина в моторе представлены рядами цифр. Такое уподобление зовут еще аналогией. Но как возникает, на чем держится родство столь разных вещей? И почему такое подобие называют именно математическим?
Здесь придется обратиться к языку современной науки. Нет, не к Алголу или другим вариантам языка, создающегося сейчас для общения с машинами. Старый язык науки, на котором она говорит со времен Ньютона, пользуется двумя алфавитами — греческим и латинским — и честными арабскими цифрами. Имя этому языку — дифференциальные уравнения. Если вы знакомы уже с ними — очень хорошо. Если нет — лучше, чтобы вам их представил учебник или популярная книга по математике. Здесь же можно ограничиться знакомством чисто шапочным. Для целей этой книжки достаточно напомнить колоссальное значение дифференциальных уравнений в науке. Надо, впрочем, подчеркнуть еще два обстоятельства. Первое — то, что дифференциальные уравнения описывают процессы, происходящие во времени, и учитывают фактор времени. Второе — то, что эти уравнения не просто язык, но язык универсальный для всех точных наук.
На этом-то языке, очищенном от мелких прикладных деталей, вроде обозначений килограммов, вольт да метров, рассказы о совершенно разных событиях начинают звучать совершенно одинаково, иногда буквально неотличимо друг от друга.
Так одними и теми же движениями обнажают шпаги киногерои фильмов, посвященных будто бы разным векам. Так неожиданно оказываются одинаковыми в сумерках два костюма, при ярком свете несхожие благодаря различию в цвете. Так одними и теми же словами описывают своих героев разные, но плохие писатели. Однако то, что минус в искусстве, — неоригинальность, в технике порою оказывается великим достоинством (разумеется, достоинством не человека, а явления). Открытие такого совпадения рассказов о разных вещах, когда они ведутся на языке формул (даже не обязательно на языке именно дифференциальных уравнений), в свое время потрясало ученых.
Посудите сами. Несколько сотен лет победно держалась в науке теория теплорода. Как утверждали ее сторонники (а было время, когда в их ряды входили все ученые Европы), теплота от тела к телу передается с помощью особой жидкости, носительницы ее. Тело остывает, когда теплород покидает его, и нагревается при приливе теплорода.
Были найдены законы, определяющие движение теплорода от тела к телу, выведены формулы этого движения. Ну, а потом выяснилось, что теплороду не находится места в предметах — открытие закона сохранения вещества окончательно покончило с теорией теплорода. Он был выброшен на свалку науки вместе с другими научными идеями-неудачницами. Но законы движения теплорода, сформулированные перед тем, отказались покинуть поле научных битв. Мало того, они вообще так и остались в их формализованном выражении (в виде формул) в науке и технике по сей день и, видимо, навсегда. Только теперь эти формулы описывают порядок перехода в веществе, от молекулы к молекуле, энергии колебаний самих молекул и атомов.
Да, удивление здесь вполне оправдано. Теория зачеркнута, носителя тепла нет, а тепло переносится так, словно он — теплород — на месте вопреки всем новым законам. Однако этот случай можно «промоделировать» таким простым примером. Два яблока и два яблока — четыре яблока. Две груши и две груши — четыре груши. Как, наверное, удивлялся первобытный человек, обнаружив, что и тому набору фруктов и другому соответствуют четыре поджатых пальца. Отделение числа от конкретного предмета было когда-то великим завоеванием человечества. Осознание того, что одни и те же формулы могут характеризовать разные процессы, не такой уж большой успех рядом с тем великим открытием. Но оно уже дело давнее. А тут ученые не только сделали открытие, но и смогли его сравнительно быстро оценить. «Сравнительно» здесь поставлено не зря — на оценку истинного значения этого факта ушло много десятков лет.
Во второй половине XIX века Максвелл удивлялся, обнаружив сходство уравнений электромагнитных колебаний и колебаний обычного маятника. (Говоря точнее, уравнения процесса колебаний маятника абсолютно совпадают с уравнениями колебаний тока в электрической цепи из емкости и индуктивности.)
Формула закона Ома, характеризующего зависимость силы тока от сопротивления, точно совпадает с формулой определения расхода воды в зависимости от сечения трубопровода.
Великий русский судостроитель, академик А. Н. Крылов с удовольствием отмечал: «Казалось бы, что может быть общего между расчетом движения небесных светил под действием притяжения к солнцу и… качкой корабля на волнении… Между тем, если написать только формулы и уравнения без слов, то нельзя отличить, какой из этих вопросов разрешается: уравнения одни и те же».
Можно привести еще более удивительные примеры, когда люди пяти разных профессий придадут пять разных смыслов одной и той же системе уравнений, поскольку для каждой из их специальностей она описывает другой процесс. Владимир Ильич Ленин не только удивлялся этому обстоятельству, но и делал из него выводы. В таком единообразии формул из отдаленных друг от друга наук он видел глубокий философский смысл.
«Единство природы, — писал он, — обнаруживается в поразительной аналогичности дифференциальных уравнений, относящихся к различным областям явлений».
Разумеется, совпадают уравнения отнюдь не всех областей — совпадение их и есть главный критерий права на подмену одного явления другим.
Движение воды оказалось возможным заменить в модели электрическим током. И ток же оказался способен выполнять роль модели теплопроводности — ведь тепло, как уже говорилось, распространяется по тем же законам, что и жидкость (вот он откуда, мифический теплород!). Можно исследовать теплопроводность фундамента на модели, в которой вместо тепла будет передвигаться самая настоящая жидкость, хотя бы вода, по тонким стеклянным трубочкам — капиллярам.
Тяжелый бетонный брус можно заменить ванночкой с водой — если ванночке дать в плане форму поперечного сечения этого бруса и распределить скорости воды у самой поверхности ванны так, как распределены напряжения по поперечному сечению бруса.
Гуттаперчевый шарик, прыгая по резиновым пластинам, уподобляется электрону, а напряжение в тонких пластиковых пленках — электрическому напряжению.
Наиболее популярны в технике, однако, такие аналогии, где чуть ли не всеобщим заместителем выступает электричество.
Вот несколько примеров той практичности, которую с его помощью проявила теория подобия.
Как вы думаете, что нужно для выяснения вопроса, как распределяется давление в грунте под еще не построенной плотиной? Советский ученый В. П. Фильчаков решил эту проблему с помощью электропроводящей (говоря точнее, полупроводниковой) бумаги, листков станиоля, электрической батарейки и ножниц. Плюс, разумеется, ряд сведений о проекте плотины и условиях ее сооружения. Ножницами ученый вырезал из бумаги контур плотины. Полосками звонкого станиоля обозначил верхний и нижний бьефы — места, где вода соприкасается с плотиной. От батарейки он подвел на полоску станиоля — «верхний бьеф» — напряжение, пропорциональное предполагаемому перепаду воды. На «нижнем бьефе» напряжение оставлено равным нулю. А теперь по бумажному листу начинает двигаться электрощуп. На соединенном с ним вольтметре отмечается напряжение в каждой точке, которую щуп проходит в своем путешествии. Цифра аккуратно переносится на обычную схему плотины. Когда электрощуп закончит свое путешествие, на схеме окажется точное распределение давлений под плотиной, потому что именно их заменяли в этой простой модели напряжения в бумаге.
На схожем принципе создавал свои модели еще до Фильчакова его учитель академик Н. Н. Павловский. Только он в аналогичном случае применил вместо электропроводящей бумаги электропроводящую жидкость (электролит), налитую в сосуд, имеющий форму будущей плотины, и исследовал напряжения в электролите.
Поневоле напрашивается сравнение с древнеегипетским методом определения высоты обелиска. Жители долины Нила умели делать это, не поднимаясь на обелиск. Они просто измеряли тень обелиска и тень палки, длина которой была заранее известна. У них получались два подобных прямоугольных треугольника, образованных: 1) палкой, тенью от нее и мысленно проведенным от вершины палки до конца тени отрезком; 2) точно так же, как в первом случае, если слово «палка» всюду заменить словом «обелиск».
Затем составлялась простая пропорция — и высота обелиска переставала быть тайной.
По сути, техника дела — замена плотины электропроводной бумагой — немногим сложнее, чем подмена обелиска палкой.
Но и случай взят ведь крайне простой. При таком моделировании мы с самого начала признаем основание плотины идеально однородным, состоящим из одного и того же вещества, одинаково на всем протяжении насыщенного водой и т. д. Ведь бумага-то повсюду одинакова!
А когда случай не идеален, бумага нас уже не выручит. Ее место должно занять что-то другое. Такого претендента на трон, такой материал для почти универсальной модели предложил еще в 1929 году советский же ученый, профессор С. А. Гершгорин. Его кандидатом стала сетка из отдельных переменных сопротивлений. Качества любой ее точки можно было менять в соответствии с данными по объекту моделирования. Правда, здесь некоторая условность есть уже в том, что со сплошным материалом оригинала сопоставлялась сетка, а всякая сеть, как известно, в конечном счете состоит из дырок. Но расчеты показывают, что дырки эти не препятствуют достижению достаточно высокой точности. Зато из отдельных сопротивлений можно получить любую фигуру и даже любое объемное тело какой угодно сложности. Сопротивления можно использовать не только металлические, но и напечатанные на бумаге электропроводящими красками. Их можно расположить в любом нужном для опыта порядке.
Попробуй забраться внутрь тела насыпной плотины!
А модель ее можно сделать строго подобной геометрически, а можно перенести отдельные части модели плотины на любое расстояние друг от друга, соединив их проводниками с ничтожно малым сопротивлением. Значит, и исследовать состояние плотины, измерять ее проницаемость, прочность, теплопроводность нетрудно в любой нужной нам точке.
Модель становится в руках ученого и «машиной времени». Положим, нужно определить, сколько воды и в каких ежедневных (в зависимости от сезона) дозах просочится через плотину за год. Модель проведет соответствующую проверку за одну двадцатую долю секунды и сообщит об этом с помощью графика. За секунду, задавая разные начальные условия (хотя бы погоду), можно проверить двадцать разных вариантов просачивания. Возможно и обратное. Легко растянуть для удобства наблюдений на минуты даже ускользающе стремительные процессы.
Вот простейший пример моделирования с помощью сетки. Надо узнать, как распределяется тепло в стене дома, — ведь от этого зависит ее прочность, с учетом такого распределения надо ставить стену. Из сопротивлений набирается участок, соответствующий толщине стены. Собственно говоря, он изображает ее поперечное сечение. Одним сопротивлениям придаются значения, соответствующие коэффициенту теплопроводности штукатурки, другим — соответствующие коэффициенту теплопроводности бетона. Что значит соответствующие?
А это вы увидите на примере того, как подается на электрическую модель напряжение. Оно, в свою очередь, должно соответствовать температуре — той, что в комнате, и той, что в январскую зимнюю ночь будет за стеной. Перепад напряжений между левой и правой сторонами моделей должен быть таким же, как перепад температур между наружной и внутренней сторонами стены. Значит, на правую сторону подается напряжение плюс 20 вольт. На левую минус 50 вольт. Вам нужно теперь узнать, какая температура будет в стене в 20 сантиметров от обоев? Пожалуйста. Измерьте напряжение на том сопротивлении, которое находится в 20 сантиметрах от правой стороны модели.
Так можно получить любые сведения о состоянии материала в любой точке стены. А попробуйте представить себе, каким способом можно получить те же данные из «абсолютной модели» — скажем, куска стены в натуральную величину, помещенного в камеру искусственного климата. Да, модель-аналогия здесь не только удобнее абсолютной модели, она еще и информационней — представляет гораздо больше сведений определенного рода о стене, чем можно их получить, исследуя стену.
Одним из грандиозных успехов сеточных моделей стало исследование Бавлинского нефтяного месторождения. Вы знаете, наверное, что самая, может быть, трудная проблема нефтедобычи — это использование нефтяного пласта «на все сто». Увы, достижение идеала здесь пока фактически невозможно. Земля прочно удерживает в своих порах большую долю нефти. Часто лучший способ заставить пласт быть более щедрым — это заменить в нем нефть водой, закачать в него по специально пробуренным скважинам воду. Давление в пласте снова повысится, к тому же вода тяжелее нефти и вытеснит ее, новая порция «черного золота» окажется на поверхности. Для Бавлинского месторождения этот принцип был явно пригоден. Но одно дело принцип, а другое — его конкретное осуществление. В какие скважины, в каком порядке, под каким давлением и в каком количестве нагнетать воду — все эти детали зависели от конкретных свойств месторождения и условий его работы. Как все подсчитать заранее?
Дело решили не просто подсчеты. В сеточной модели электрические сопротивления подобрали соответственно проницаемости пласта в разных местах. Напор воды и дебет скважин «аллегорически» выразили в виде электрического напряжения. Затем стали менять напряжение, соответствующее напору воды, подводить его то к одной части скважин, то к другой до тех пор, пока не нашли такую форму модели, при которой дебет скважин в целом по месторождению оказался максимальным. И выяснилось, что при обводнении месторождений из 174 уже имеющихся скважин понадобятся только 93. Был выяснен и лучший режим работы этих 93 скважин. Неплохой результат! На сеточных моделях в последующие годы находили лучший режим добычи для многих нефтяных месторождений. По ряду из них удалось сократить намеченное поначалу число скважин на две пятых. Модель дала возможность бурить только по три скважины вместо каждых пяти! А одна скважина средней глубины соответствует (используем еще раз это слово, столько раз уже нам пригодившееся) 100 тысячам рублей.
Десять лет уже как была сделана первая модель… человеческого сердца и кровеносной системы. Она аккуратно вычерчивала кардиограмму. Самое интересное то, что такие модели можно использовать для постановки диагноза.
Скажем, врач приходит к выводу, что у пациента дефект сердца. Он настраивает модель на этот дефект. Если та кардиограмма, которую она вычерчивает теперь, близка к кардиограмме больного, диагноз поставлен правильно. Конечно, тут надо принимать во внимание индивидуальность человека, особенности его организма. Очень удобно, например, применять этот метод, если имеется кардиограмма человека, снятая еще в ту пору, когда его сердце было здорово. Может быть, когда-нибудь в истории болезни человека будут храниться миниатюрные модели его сердца и легких, почек и печени. Простое сравнение работы сердца и его модели точно покажет, какие именно и в каком направлении произошли изменения.
Что же, изготовление моделей «индивидуального пошива», «на заказ», — привычная сторона работы не лабораторий уже, а мощных предприятий. Только пока обычно изготовляют они модели огромных сооружений вроде гидростанций.
А есть сеточные модели и не заказные, а, так сказать, массового потребления. Модели, которые годятся для всех электростанций, всех домов, всех нефтяных месторождений.
Впрочем, так сразу называть их моделями рано. Это ведь лишь заготовки для моделей, лишь устройства для моделирования. В модели они превращаются только после того, как в них будут введены конкретные данные, зафиксированы условия существования, работы, сооружения объекта моделирования.
Высшая ступень такого устройства — аналоговая машина. Смысл ее названия, я думаю, теперь уже не нужно объяснять. Есть у аналоговой машины и другое имя — электронно-вычислительная машина непрерывного действия. А цифровые электронно-вычислительные машины считают машинами дискретного, то есть прерывного, действия. Они ведь орудуют отдельными цифрами, а в аналоговых машинах математические действия производятся с помощью не разбитого человеком на отдельные порции электрического тока.
Вот уже столько времени мы расхваливаем электрические модели — от сделанных из бумаги до аналоговых машин. А между тем у всех у них есть один общий недостаток. Они неточны. Недаром французская поговорка гласит: «Всякое сравнение хромает». Вот так же обстоит дело с аналогиями в технике.
Отклонение полученного результата от действительности может достигать здесь порою даже 15 процентов — и это при соблюдении основных правил теории подобия! Конечно, ошибки такого размаха допускаются не так уж часто. Чем сложнее модель, чем большее число деталей она учитывает, тем больше становится точность. Часто ошибки не превышают 5 процентов. Нередко — совсем нередко — данные, предварительно полученные на модели, только на десятые доли процента отклоняются от опытных, ставших известными после того, как объект моделирования был построен. Но повысить точность еще больше — задача очень трудная и часто слишком дорогая. Само решение дифференциальных уравнений на аналоговых машинах несет в себе элементы упрощения. И в условиях, когда необходимо непременно самое точное решение, ученые обращаются за ответом к электронным цифровым вычислительным машинам. На них, по существу, тоже происходит моделирование процесса, характеристики которого выясняются расчетом.
Мы ведь уже договорились, что описание закономерностей явления есть его модель. А цифровые машины и имеют дело с такими описаниями, сделанными с помощью дифференциальных уравнений. В аналоговых машинах уравнения подменяются токами. Здесь же они выступают в чистом виде. Результат — точность, которая и не снилась создателям аналоговых машин.
Но зачем же тогда нужны эти машины, если их «сестры», работающие на другом принципе, способны делать то же самое, только несравненно лучше? Раз дифференциальные уравнения действительно любимый язык науки, почему бы не поговорить с истиной именно на этом языке, не прибегая к переводчикам вроде электрического тока? Что же, с истиной часто разговаривают именно на языке дифференциальных уравнений. Цифровые вычислительные машины, пожалуй, захватили первенство в кибернетической технике. Вспомните все, что вы читали и слышали о ее возможностях и успехах. Уверен, что в большинстве случаев речь шла как раз о победах, достигнутых в конечном счете с помощью прямого, непосредственного цифрового решения дифференциальных уравнений.
Но, знаете, сторонники аналоговых машин — а их множество — считают этот крен в сторону цифровой вычислительной техники неоправданным и в чем-то даже вредным. Они требуют увеличения выпуска аналоговых машин и резкого расширения сферы их применения.
И к их аргументам трудно не прислушаться. Ученые напоминают, что многие явления еще «не умеют говорить» на языке дифференциальных уравнений. Причин тому — основных — можно указать две.
Первая: в данном конкретном случае для данного конкретного процесса удается составить слишком мало дифференциальных уравнений — сильно не хватает экспериментальных данных.
Вторая: в данном конкретном случае для данного конкретного процесса дифференциальных уравнений получается слишком много — оказываются запутанными математические соотношения между разными его сторонами. Ну, первая причина еще понятна — мы ведь упоминали о ней еще на подходах к объяснению важности теории подобия. А вторая? Неужели для электронно-счетных машин — гордости нынешней техники — уравнений может оказаться слишком много?
Вот пример. Проследим за межпланетным кораблем, поднимающимся с Земли. Каждую долю секунды он становится легче — сгорает часть взятого в путь топлива. Каждую долю секунды увеличивается скорость. Каждую долю секунды меняется, в зависимости и от скорости корабля и от плотности атмосферы, лобовое сопротивление. А ведь изменяется и поле тяготения, через которое идет корабль, и сила тяжести в нем самом, и многое, многое другое. Все эти изменения важны, все их нужно знать — а для этого моделировать. Если такое моделирование проводить на машине дискретного действия, дифференциальные уравнения придется упрощать, иначе она с ними не справится в кратчайший срок, которым будет ограничена. Значит, здесь придется отказаться от важнейшего достоинства таких машин — высочайшей точности.
А когда такая точность недосягаема или не нужна, аналоговые машины вполне на своем месте. Ведь есть масса случаев, когда лучше быстро получить приблизительный ответ, чем точный неизвестно когда или, во всяком случае, через солидный срок.
Есть у аналоговых машин и такое немаловажное достоинство, как дешевизна, — а ведь цифровые вычислительные машины не только сказочно могучи, но и сказочно дороги, да еще и дорожают в силу своего усложнения не по дням, а по часам. Ну, и работать с аналоговыми машинами сравнительно проще.
Однако никакие моделирующие устройства и электронно-вычислительные машины не могут вывести из употребления модели неэлектрические и негидравлические.
Несколько примеров роли моделей доброго старого типа стоит привести. Начать придется с чего-то вроде сверхкороткой исторической справки об употреблении таких моделей, а потом я расскажу несколько наиболее, по-моему, любопытных историй с моделями, с которыми я познакомился как журналист.