Металлоо'птика, раздел оптики , в котором изучается взаимодействие металлов с электромагнитными волнами. Основные оптические особенности металлов: большой коэффициент отражения R (например, у щелочных металлов R ~ 99%) в широком диапазоне длин волн и большой коэффициент поглощения (электромагнитная волна внутри металла затухает, пройдя слой толщиной d ~ 0,1¸1×10-5 см, см. Скин-эффект ). Эти особенности связаны с высокой концентрацией в металле электронов проводимости (см. Металлы ).
Взаимодействуя с электромагнитной волной, падающей на поверхность металла. электроны проводимости одновременно взаимодействуют с колеблющимися ионами решётки. Основная часть энергии, приобретённой ими от электромагнитного поля, излучается в виде вторичных волн, которые, складываясь, создают отражённую волну. Часть энергии, передаваемая решётке, приводит к затуханию волны внутри металла. Электроны проводимости могут поглощать сколь угодно малые кванты электромагнитной энергии ћw (ћ — Планка постоянная , w — частота излучения). Поэтому они дают вклад в оптические свойства металла при всех частотах. Особенно велик их вклад в радиочастотной и инфракрасной областях спектра. По мере увеличения w вклад электронов проводимости в оптические свойства металлов уменьшается, уменьшается и различие между металлами и диэлектриками .
Остальные валентные электроны влияют на оптические свойства металла только когда они участвуют во внутреннем фотоэффекте , что происходит при ћw ³ DE (DE — энергетическая щель между основным и возбуждённым состояниями электронов). Возбуждение электронов приводит к аномальной дисперсии волн и к полосе поглощения с максимумом вблизи частоты резонансного поглощения. Благодаря сильному электрон-электронному и электрон-ионному взаимодействию полосы поглощения в металле значительно шире, чем в диэлектрике. Обычно у металлов наблюдается несколько полос, расположенных главным образом в видимой и ближней ультрафиолетовой областях спектра. Однако для ряда поливалентных металлов наблюдаются полосы и в инфракрасной области спектра. При частотах w ³ wп , где wп — плазменная частота валентных электронов, в металле возбуждаются плазменные колебания электронов. Они приводят к появлению области прозрачности при w » wп .
В ультрафиолетовой области коэффициент отражения R падает и металлы по своим свойствам приближаются к диэлектрикам. При ещё больших частотах (рентгеновская область) оптические свойства определяются электронами внутренних оболочек атомов и металлы по оптическим свойствам не отличаются от диэлектриков.
Оптические свойства металлов описываются комплексной диэлектрической проницаемостью :
где e' — вещественная диэлектрическая проницаемость, s — проводимость металла, или комплексным показателем преломления:
(k — показатель поглощения). Комплексность показателя преломления выражает экспоненциальное затухание волны внутри металла. При падении плоской волны на поверхность металла под углом j ¹ 0 волна внутри металла будет неоднородной. Плоскость равных амплитуд параллельна поверхности металла, плоскость равных фаз наклонена к ней под углом, величина которого зависит от j. Волны, отражённые от поверхности металла, поляризованные в плоскости падения и перпендикулярно к ней, имеют разность фаз. Благодаря этому плоскополяризованный свет после отражения становится эллиптически-поляризованным. Коэффициент отражения R волн, поляризованных в плоскости падения, у металлов, в отличие от диэлектриков, всегда ¹ 0, и лишь имеет минимум при определённом j.
Для чистых металлов при низкой температуре в длинноволновой области спектра длина свободного пробега электронов l становится > d. При этом затухание волны перестаёт быть экспоненциальным, хотя и остаётся очень сильным (аномальный скин-эффект). В этом случае комплексный показатель преломления теряет смысл и связь между падающей и преломленной волной становится более сложной. Однако свойства отражённого света при любом соотношении между l и d полностью определяются поверхностным импедансом Z , с которым связывают эффективные комплексные показатели поглощения и преломления:
n эф — i kэф = 4p/(cZ ).
При l < d величины n и k в формулах заменяются на n эф и kэф .
Для измерения n и k массивного металлического образца исследуют свет, отражённый от его поверхности, либо поляризационными методами (измеряются характеристики эллиптической поляризации отражённого света), либо методами, основанными на измерении R (в широком спектральном диапазоне) при нормальном падении его на поверхность металла. Эти методы позволяют измерить оптические характеристики в инфракрасной, видимой и ультрафиолетовой областях с ошибкой ~0,5—2%. Для измерения тонкой структуры полос поглощения используются методы, основанные на модуляции свойств металла, приводящей к модуляции интенсивности отражённого света, которая и измеряется (термоотражение, пьезоотражение и т.п.). Указанные методы позволяют с большой точностью определить изменения R при изменении температуры, при деформации и т.п. (см. табл.), а также исследовать тонкую структуру полос поглощения. Особое внимание уделяется приготовлению поверхности исследуемых образцов. Поверхности нужного качества получаются электрополировкой или испарением металла в вакууме с последующим осаждением его на полированные подложки.
Оптические характеристики некоторых металлов
l = 0,5 мкм | l = 5,0 мкм | |||||
n | k | R % | n | k. | R % | |
Na* | 0,05 | 2,61 | 99,8 | — | — | - — |
Cu Ag Au | 1,06 0,11 0,50 | 2,70 2,94 2,04 | 63,2 95,5 68,8 | 3,1 2,4 3,3 | 32,8 34,0 35,2 | 98,9 99,2 98,95 |
Zn | — | — | — | 3,8 | 26,2 | 97,9 |
Al In | 0,50 — | 4,59 — | 91,4 — | 6,7 9,8 | 37,6 32,2 | 98,2 96,6 |
Sn Pb | 0,78 1,70 | 3,58 3,30 | 80,5 62,6 | 8,5 9,0 | 28,5 24,8 | 96,2 95,0 |
Ti | 2,10 | 2,82 | 52,2 | 3,4 | 9,4 | 87,4 |
Nb V | 2,13 2,65 | 3,07 3,33 | 56,0 56,6 | 8,0 6,6 | 27,7 17,5 | 96,2 92,7 |
Mo W | 3,15 3,31 | 3,73 2,96 | 59,5 51,6 | 4,25 3,48 | 23,9 21,2 | 97,2 97,0 |
Fe Co Ni | 1,46 1,56 1,54 | 3,17 3,43 3,10 | 63,7 65,9 61,6 | 4,2 4,3 4,95 | 12,5 14,6 18,5 | 90,8 92,9 94,8 |
Pt | 1,76 | 3,59 | 65,7 | 7,6 | 20,2 | 93,7 |
* Оптические характеристики относятся к l = 0,5893 мкм.
М. позволяет по оптическим характеристикам, измеренным в широком спектральном диапазоне, определить основные характеристики электронов проводимости и электронов, участвующих во внутреннем фотоэффекте. М. имеет также и прикладное значение. Металлические зеркала применяются в различных приборах, при конструировании которых необходимо знание R , n и k в различных областях спектра. Измерение n и k позволяет также установить наличие на поверхности металла тонких плёнок (например, плёнки окиси) и определить их оптические характеристики.
Лит.: Соколов А. В., Оптические свойства металлов, М., 1961; Борн М., Вольф Э., Основы оптики, пер. с англ., М., 1970; Гинзбург В. Л., Мотулевич Г. П., Оптические свойства металлов, «Успехи физических наук», 1955, т. 55, в. 4, с. 489; Мотулевич Г. П., Оптические свойства поливалентных непереходных металлов, там же, 1969, т. 97, в. 2, с. 211; Кринчик Г. С., Динамические эффекты электро- и пьезоотражения света кристаллами, там же, 1968, т. 94, в. 1, с. 143; Головашкин А. И., Металлооптика, в кн.: Физический энциклопедический словарь, т. 3, М., 1963.
Г. П. Мотулевич