Глава 2. Лайнландия и Флатландия

Мы живем в мире трех измерений, или, как иногда говорят для краткости современные геометры, в 3-пространстве. Каждое твердое тело можно измерить вдоль трех осей: север — юг, восток — запад и верх — низ. (Один приятель рассказывал мне, что у них в колледже преподаватель математики, человек с причудами, объяснял существование этих трех осей следующим образом: сперва он бегом пересекал аудиторию поперек, затем вдоль — по центральному проходу, — а после этого несколько раз подпрыгивал на месте.) Изучением геометрических фигур в 3-пространстве занимается стереометрия. Если мы ограничимся рассмотрением двух измерений, то получим планиметрию, то есть геометрию фигур, начерченных на двумерной поверхности — в 2-пространстве. Можно сделать еще один шаг вниз по этой лестнице и рассмотреть фигуры 1-пространства — одномерные фигуры, которые помещаются на прямой линии. Полезно разобрать природу зеркальных отображений во всех трех перечисленных пространствах.

Начнем с самого простого и познакомимся с Лайнландией, которая состоит из точек, образующих одну-единственную прямую, простирающуюся до бесконечности в обоих направлениях. Забавы ради представим себе, что такая линия населена расой примитивных созданий (жителей Лайнландии), которых мы будем называть одномерцами. Одномерцы мужского пола представляют собой длинные отрезки с «глазом» на одном конце (глаз мы будем изображать просто точкой). Одномерцы женского пола — более короткие отрезки и тоже с глазом на конце. Глаза прорезаются лишь у взрослых одномерцев. Дети — просто маленькие палочки без глаз. Чтобы сделать жизнь одномерцев интереснее, мы должны были бы, конечно, поселить их в мире, состоящем из сложной сети линий, чтобы они могли двигаться взад и вперед по ней, переходя с одной линии на другую, как железнодорожные вагоны на разъездах, но это излишне осложнило бы нашу задачу, так что ограничимся пока единственной линией. Если перпендикулярно линии поместить зеркало, как показано на рис. 4, можно получить зеркальные образы одномерцев. На рисунке изображено целое зеркало, но что касается одномерцев, то их «зеркало» — всего лишь точка на линии. Заметим сперва, что одномерец-младенец является точной копией своего зеркального изображения. Это означает, что мы можем мысленно переместить маленького одномерца по линии в само зеркало, не поворачивая одномерца на плоскости, до тех пор, пока он не совпадет точка в точку со своим зеркальным близнецом. Если такую операцию можно сделать с некоторой фигурой, то мы говорим, что эта фигура симметрична.

Рис. 4. Одномерцы и их зеркальные изображения.

А симметричны ли взрослые одномерцы? Нет, потому что мы не можем совмещать их с зеркальными изображениями, перемещая по прямой, — дело в том, что концы у взрослых одномерцев разные. Пусть линия, на которой они живут, простирается с востока на запад. Если взрослый одномерец обращен лицом на восток, его зеркальный двойник будет смотреть на запад. Мы, конечно, можем перевернуть одномерца и точно совместить с изображением, но для этого придется «снять» его с линии и произвести поворот в пространстве более высокой размерности — в двумерном мире. Поскольку, не выходя в пространство высшей размерности, нельзя наложить взрослого одномерца на его зеркальный образ, мы говорим, что эта фигура асимметрична.

Есть и другой способ отличить в Лайнландии симметрию от асимметрии. Если фигура симметрична, то у нее всегда есть точка (только одна) в самом центре, которая делит фигуру на две идентичные половинки, причем одна из них есть отражение другой. Такая точка называется центром симметрии. Если мы поместим зеркало перпендикулярно линии в этой точке, оставшаяся часть фигуры вместе со своим отражением будет точно воспроизводить исходную фигуру независимо от того, в какую сторону обращено зеркало. Можно ли считать тогда, что одномерец с глазами с обоих концов симметричен? Да. Такую фигуру можно было бы наложить на зеркальное изображение, и у нее был бы центр симметрии, делящий фигуру на две зеркальные половинки.

Пусть в Лайнландии живут только три взрослых одномерца — А, Б и В, причем все они «смотрят» на восток. Если мы получим зеркально обращенную картину одного из них, скажем среднего, то все трое мгновенно заметят перемену. Теперь А и Б «глядят друг на друга», а Б и В «повернуты спинами» один к другому. Но если вся прямая окажется зеркально отраженной, то есть вся «вселенная» одномерцев, то сами они о происшедшей перемене не смогут узнать. В действительности для них просто не имеет смысла говорить о какой-либо перемене. Мы знаем, что направление линии изменилось на обратное, но знаем потому, что живем в 3-пространстве и можем наблюдать положение Лайнландии по отношению к внешнему миру. Но одномерцы не могут представить себе пространство размерности большей чем единица. Они знают только свой собственный мирок, ту единственную прямую, на которой живут. С их точки зрения, никакого изменения не произошло. Только в том случае, когда операции зеркального отражения подвергается какая-то часть их «вселенной», одномерцы смогут заметить перемену.

Во Флатландии, в 2-пространстве планиметрии, все обстоит интереснее, но в отношении зеркальной симметрии предметы ведут себя практически так же, как в Лайнландии. На рис. 5 наш художник дал стилизованное изображение асимметричного двумерца и его отражения в вертикальном зеркале. (Оно изображено объемно, в 3-пространстве, но зеркало двумерца — это всего лишь прямая линия, которую он видит перед собой.) Совместить двумерца с зеркальным изображением невозможно. Если бы мы могли его взять с плоскости, как бумажного солдатика, перевернуть и снова положить в перевернутом виде, то все это можно было бы произвести в 3-пространстве, а не в 2-пространстве Флатландии. Что же произойдет, если держать зеркало над двумерцем или под ним, как показано на рис. 6? В этом случае поменяются местами верх и низ, потому что зеркало перпендикулярно вертикальной оси. Но изображение в зеркале получится таким же, как и прежде; изменится только его положение на плоскости. Мы можем взять любое из зеркальных изображений на рис. 6 и, перевернув, совместить их точка в точку с зеркальным изображением на рис. 5. Где именно помещено зеркало — не имеет ни малейшего значения, так как отражение асимметричного двумерца всегда получается одинаковым.

Рис. 5. Двумерец и его отражение в вертикальном зеркале.

Нетрудно изобразить разные геометрические фигуры Флатландии, которые являются симметричными и не меняются при отражении в зеркале. Квадраты, окружности, эллипсы, равносторонние и равнобедренные треугольники, значки карточных мастей — бубновой, червонной, пиковой и трефовой — все они при отражении остаются неизменными. В Лайнландии, как мы уже знаем, у каждой симметричной фигуры есть точка, которая делит фигуру на зеркальные половинки. С симметричными фигурами Флатландии то же самое делает прямая линия, называемая осью симметрии. На рис. 7 приведены примеры различных симметричных фигур на плоскости. Оси симметрии указаны пунктирными линиями. Обратите внимание на то, что у фигуры может быть разное число осей симметрии — от одной до бесконечности. Круг — единственная плоская фигура, имеющая бесконечное число таких осей. Другие фигуры могут иметь хоть и не бесконечное, но произвольно большое число подобных осей. Если поместить зеркало так, чтобы его край совпадал с осью симметрии, то оставшаяся перед зеркалом часть фигуры вместе с отражением, как и в Лайнландии, точно повторит форму исходной фигуры.

Рис. 6. Двумерец, и его отражения в горизонтальных зеркалах.

Любая плоская фигура, обладающая по крайней мере одной осью симметрии, считается симметричной, поскольку ее можно всеми точками наложить на зеркальное изображение. Математикам известны и многие другие виды симметрии (о некоторых из них пойдет речь в гл. 2), но в этой книге мы постоянно будем иметь дело только с симметрией отражения. Называя фигуру «симметричной» (независимо от числа измерений), мы всегда будем иметь в виду только одно: эта фигура идентична своему зеркальному изображению, то есть ее можно наложить на зеркальное изображение, не прибегая к поворотам в пространстве более высокой размерности.

Легко привести примеры и асимметричных плоских фигур. Так, например, фигуры, изображенные на рис. 8, не могут быть соединены со своими зеркальными изображениями. Если вы попытаетесь провести через центр любой из этих фигур линию, которая делила бы фигуру на зеркальные половинки, вы убедитесь, что сделать этого невозможно. Как бы вы ни приставляли зеркало, отражаемая часть вместе с отражением не образует первоначальной фигуры. По этой причине каждую асимметричную фигуру можно рисовать на плоскости двумя способами.

Рис. 7. Плоские фигуры с одной или несколькими осями симметрии.
Рис. 8. Асимметричные плоские фигуры.

Некоторые заглавные буквы в алфавитах симметричны, а некоторые нет. Вот первое из упражнений, предлагаемых в этой книге (все упражнения перенумерованы и ответы приведены в конце книги):


Упражнение 1. Какие из заглавных букв русского алфавита асимметричны, а какие нет?

Рис. 9. Какие из этих букв симметричны?

Попробуйте ответить на этот вопрос, не пользуясь зеркалом. Помните, что буква симметрична, если можно выбрать по крайней мере одну такую прямую, чтобы она делила букву на зеркальные половинки. Если такой оси симметрии нет, то буква асимметрична. Напечатайте на листке симметричные буквы и поднесите его к зеркалу. Когда буквы выбраны правильно, то всегда можно повернуть листок так, чтобы буквы в зеркале не отличались от обычных. Чтобы добиться этого, для разных букв листок придется поворачивать по-разному, потому что направления осей симметрии у разных букв не всегда совпадают. Буква «А», например, имеет вертикальную ось симметрии. Она не изменится в зеркале, если поднести к нему листок прямо, не поворачивая. Однако у «В» ось симметрии горизонтальная. Поначалу покажется, что отражение существенно отличается от самой буквы, но поверните листок—и вы увидите в зеркале обычное «В». Проверив в зеркале все буквы, которые вы сочтете симметричными, попробуйте провести для каждой из них все ее оси симметрии. Вам удастся это сделать для всех букв, кроме «О». Если рисовать «О» в виде эллипса, осей будет всего две, но мы нарисовали ее кружком — в этом случае число осей симметрии бесконечно.

Теперь поднесите к зеркалу листок с асимметричными буквами. Если они выбраны правильно, то, как бы вы ни вертели листок, ни одна из этих букв не будет выглядеть в зеркале «как настоящая». Все отражения асимметричных букв «получаются не такими». Рассмотрите эти буквы, и вы убедитесь, что для них невозможно провести оси симметрии. То, что свойства симметрии меняются от буквы к букве, дает возможность проделать ряд забавных фокусов с отражением слов в зеркале, но прежде чем рассказать о них (это будет сделано в гл. 4), мы должны посвятить следующую главу рассмотрению симметрии и асимметрии фигур в 3-пространстве, в том трехмерном мире, где живем мы сами.

Загрузка...