Глава 3. Трехмерный мир

В 3-пространстве, так же как в 1-пространстве и 2-пространстве, все фигуры можно разбить на две группы: симметричные и асимметричные. Симметричные пространственные фигуры можно наложить точка за точкой на их зеркальные изображения. С асимметричными пространственными фигурами этого сделать нельзя. Симметричные фигуры в 1-пространстве, если вы помните, имеют точку (центр) симметрии; симметричные фигуры в 2-пространстве имеют ось симметрии — линию. Как и следовало ожидать, симметричные фигуры в 3-пространстве имеют так называемую плоскость симметрии.

Поясним это утверждение несколькими примерами. Сфера — пространственная фигура, которая, очевидно, полностью сходна со своим зеркальным изображением. Как круг можно рассечь бесчисленным множеством прямых линий, каждая из которых делит его на две зеркальные половинки, так и через центр сферы можно провести бесконечное число плоскостей. Если представлять себе плоскость симметрии как зеркало, то полусфера вместе со своим отражением в зеркале образует фигуру, совпадающую с исходной сферой. Представьте себе разрезанный пополам шарик для настольного тенниса. Если одну из половинок прижать к зеркалу линией разреза, то эта половинка вместе с отражением будет выглядеть как целый шарик. Сфера — не единственная трехмерная фигура, обладающая бесконечным числом плоскостей симметрии. Цилиндрическая сигарета, например, имеет бесконечное множество таких плоскостей, проходящих через ось сигареты плюс еще одна плоскость, которая проходит через центр сигареты и перпендикулярна ее оси. У конусообразного стаканчика с мороженым через ось тоже можно провести бесчисленное множество плоскостей симметрии, но плоскости симметрии, перпендикулярной оси конуса, нет. Чтобы быть симметричным, трехмерный объект должен иметь по крайней мере одну плоскость симметрии, хотя таких плоскостей он может иметь сколько угодно. У пирамиды Хеопса четыре плоскости симметрии. У кирпича — три. У стола с прямоугольной крышкой — две, а у стула или кофейной чашки только по одной. Если распилить чашку на две половинки вдоль плоскости симметрии и любую из полученных половинок прижать к зеркалу, «получится» целая чашка — в этом и заключается, конечно, смысл понятия «плоскость симметрии». Плоскость симметрии чашки наталкивает на каверзный вопрос: где у чашки ручка — слева или справа?

Рис. 10. Плоскости симметрии.

На рис. 10 изображены шесть трехмерных тел. У всех, кроме куба, проведены плоскости симметрии. Изучите изображение куба внимательно и попытайтесь ответить на такой вопрос:

Упражнение 2. Сколько плоскостей симметрии у куба?

Для совмещения симметричного трехмерного предмета со своим зеркальным изображением может потребоваться поворот в 3-пространстве. Предположим, вы подносите к зеркалу конический стаканчик с мороженым. Если держать его, как показано на рис. 11 слева, чтобы плоскость зеркала была параллельна одной из плоскостей симметрии конуса, то можно совместить предмет с изображением, просто сдвинув их вместе. Но если конус направлен вершиной в сторону зеркала (правая часть рис. 11), то в этом случае, как говорят, предмет и отражение будут иметь разную ориентацию в 3-пространстве. Для того чтобы совместить эти две фигуры, одну из них необходимо повернуть так, чтобы оба конуса были сориентированы одинаково. В данном случае сферу вращать никогда не придется, потому что плоскость зеркала всегда будет параллельна одной из бесчисленного множества плоскостей симметрии сферы.

Рис. 11. Конусы можно наложить на зеркальное изображение независимо от ориентации.

У асимметричных пространственных объектов нет ни одной плоскости симметрии; их никогда нельзя совместить с отражением в зеркале независимо от ориентации — это, например, всем известные спиральная пружина и винтовая лестница. Точно так же, как спираль является асимметричной фигурой в плоскости, пружина — трехмерная спираль — асимметрична в 3-пространстве. Как ни пытайтесь, вам не удастся плоскостью рассечь пружину на две зеркально симметричные половинки. Поднесите пружину к зеркалу. Как бы вы ее ни поворачивали, в зеркале она всегда «получается не такой».

Каждая асимметричная фигура имеет зеркального двойника, который во всех деталях совпадает с ней — только «получается не такой». Две асимметричные фигуры, являющиеся зеркальным изображением одна другой, называются энантиоморфами. Каждая из них энантиоморфна другой. Знакомый пример пары энантиоморфов — ваши собственные руки. Посмотрите на них, сблизив ладони, и увидите, что одна — зеркальное отражение другой. Этот пример стал таким обыденным, что любые энантиоморфы различают, называя одни из них «правыми», а другие «левыми». Пара перчаток, ботинок или ваши уши — все это энантиоморфы.

Если составная часть какого-нибудь предмета включает винт или пружину, то он асимметричен; и штопор, и винт, и гайка, все что с винтовой резьбой, асимметричны. Винты обычно делают так, что они ввинчиваются при вращении их по часовой стрелке. Про такие винты говорят, что они с правой резьбой. Для специальных целей изготовляются и винты с левой резьбой. В автомобилях, например, шпильки и гайки, которыми крепятся колеса, с одной стороны автомобиля имеют правую резьбу, а с другой — левую. (Это сделано потому, что при вращении колес гайки по обе стороны автомобиля стремятся раскручиваться.) Разная резьба не дает возможности резьбовому соединению разболтаться. Цоколи электрических лампочек, которые вы покупаете в магазине, имеют правую резьбу, но лампочки, которые до недавнего времени можно было видеть в вагонах нью-йоркского метро, имели левую резьбу! Это была мера против тех, кто выкручивал их и брал себе домой. (Теперь вместо ламп накаливания в метро употребляются лампы дневного света, они вставляются в специальные зажимы.) А слыхали ли вы когда-нибудь о левом штопоре? Попробуйте сделать такой и подшутить над кем-нибудь. Дайте его тому, кто хочет открыть бутылку, и посмотрите, скоро ли он сообразит, почему у него ничего не получается! Если же вращать такой штопор против часовой стрелки, он, конечно, ввернется в пробку не хуже всякого другого.

Упражнение 3. Можете ли вы сказать, почему во всем мире в основном используется правая резьба?

Посмотрите вокруг себя, и вы будете удивлены тем, сколь многие предметы, сделанные человеком, в целом симметричны, хотя бы внешне. В некоторых случаях предметы, кажущиеся симметричными на первый взгляд, при ближайшем рассмотрении таковыми не оказываются. Например, ножницы. Их лезвия могут в принципе пересекаться двумя различными способами — один зеркальное отражение другого. Большинство ножниц сделано с расчетом на то, что человек будет пользоваться ими, держа их в правой руке. Если вы не левша, то знаете, как неудобно стричь ногти на правой руке, держа ножницы в левой. Дело не только в том, что вы правша и левой рукой вам работать вообще неудобно: ножницы сделаны для пользования ими правой рукой, а вы держите их левой. Нажимать при этом на ручки так, чтобы ножницы резали как следует, очень неловко. В связи с этим выпускаются специальные ножницы для портных-левшей и вообще всех «леворуких» людей, которым часто приходится работать с ножницами.

Симметричен ли автомобиль? В общих чертах да, но, присмотревшись к деталям, например к расположению рулевого колеса, мы увидим, что это, конечно, не так. Энантиоморфом американских автомобилей являются, например, английские, которые приспособлены для левостороннего движения, поэтому руль у них справа. А симметричен ли самолет, летящий высоко в небе? Днем — да, но не ночью, когда на его левом крыле загорается зеленый огонь, а на правом — красный. Симметричен ли электрический вентилятор? Нет, потому что его лопасти вырезаны из винтовой поверхности. Если заменить их энантиоморфными лопастями, вентилятор будет гнать воздух назад, а не вперед. Винты самолетов и кораблей также асимметричны. Как вы думаете, симметричен кусок веревки? Может быть. Присмотритесь повнимательнее. Если она состоит из крученых ниток, значит, симметрия отсутствует, скрученная нитка — та же спираль, а в зеркальном отражении она будет закручиваться в другую сторону.

Упражнение 4. Какие из перечисленных ниже предметов асимметричны?

1. Хоккейная клюшка.

2. Спиннинг.

3. Машинка для точки карандашей.

4. Вилка.

5. Серп.

6. Саксофон.

7. Разводной гаечный ключ.

Лист Мёбиуса — хорошо известный топологический курьез — асимметричен. Если вы закрутите полоску бумаги на полоборота и склеите концы, то получите поверхность, у которой только одна сторона и только один край. Но это закручивание на полоборота можно сделать двояким способом — вправо или влево. Изогнете в одну сторону — получите лист Мёбиуса одного типа. Изогнете в другую — получите его энантиоморф.

Простой узел, завязанный на замкнутой веревочной петле, тоже может быть правым и левым. На рис. 12 изображена пара таких энантиоморфных узлов. Как бы вы ни старались, вам не удастся превратить узел в его зеркального близнеца. Обращали ли вы когда-нибудь внимание на то, что, скрещивая руки на груди, вы «завязываете себя» именно в такой узел? Следующий наглядный пример поможет вам понять это. Разложите перед собой на столе или дайте кому-нибудь подержать кусок веревки длиной около метра. Скрестите руки, взяв предварительно веревку за концы; теперь разъедините руки. Раньше у вас они были «завязаны узлом», теперь узел перейдет на веревку. В зависимости от того, как вы сложите руки, получится «правый» или «левый» узел. Отложите в сторону завязанный конец веревки и проделайте то же самое с другим концом, но теперь сложите руки «по-другому». Получившийся узел будет зеркальным отражением первого. Если вы проделаете все это перед зеркалом, то увидите, что ваш энантиоморф в зеркале и руки-то складывает «по-другому» и узел у него получается другой — если у вас левый, то у него правый, и наоборот.

Рис. 12. Правый и левый узлы.

Может быть, теперь, имея за плечами это краткое введение в теорию симметрии отражения, вы сможете ответить на вопрос, заданный в гл. 1: почему зеркало меняет местами правую и левую стороны, а не низ и верх?

Любопытно, что ответ определяется тем фактом, что наши тела, так же как и тела большинства животных, обладают только одной плоскостью симметрии. Она проходит, конечно, вертикально, через центр тела и разделяет его на две зеркальные половинки. Это справедливо только приближенно. В гл. 1 мы говорили, что в каждом лице есть незначительные асимметричные детали. Внутреннее строение тела обнаруживает, конечно, более существенную асимметрию — сердце у нас слева, аппендикс справа и т. д. (В последующих главах мы обсудим асимметрию живых существ более подробно.) Но внешне животные и люди обладают двусторонней симметрией, когда левая половина тела есть зеркальное изображение правой. Между передней и задней сторонами тела такого сходства не существует, нет его и между верхней и нижней частями. По этой причине, а также потому, что благодаря земной гравитации все предметы притягиваются вниз, мы создаем тысячи вещей (стулья, столы, комнаты, здания, автомобили, поезда, самолеты и т. д.), обладающих внешне и в среднем билатеральной симметрией. В зеркале мы видим своего двойника, стоящего посреди комнаты-двойника. Когда мы двигаем правой рукой, он двигает левой. Мы говорим, что зеркало меняет местами правую и левую стороны, лишь потому, что так нам удобнее всего обозначать различие между билатерально симметричной фигурой и ее энантиоморфом. В строгом математическом смысле зеркала «переставляют» не правую и левую, а переднюю и заднюю стороны!

Чтобы понять это, еще раз представьте себя стоящим перед зеркалом во всю стену комнаты. Вы смотрите прямо перед собой, и слева у вас запад, а справа восток. Пошевелите «западной» рукой. При этом у зеркального изображения тоже движется «западная» рука. Подмигните «восточным» глазом. Отражение тоже мигает «восточным» глазом. Голова у вас вверху, а ноги внизу. И у отражения голова вверху, а ноги внизу. Другими словами, оси восток — запад и верх — низ сохраняют свое направление в 3-пространстве. Изменяет свое направление ось вперед — назад, идущая с юга на север и перпендикулярная зеркалу. Вы стоите лицом к северу, отражение — лицом к югу. Проведите на полу мелом линию с юга на север перпендикулярно зеркалу и отметьте на ней точки, последовательно пронумеровав их с севера на юг: 1, 2, 3 и так далее до 10. В зеркале эти точки идут с севера на юг в обратном порядке: 10, 9, 8, 7 — до единицы. Говоря математически, зеркало не изменило оси слева — направо и вверх — вниз, а вот оси вперед — назад оказались направленными в противоположные стороны. Мы говорим, что зеркало меняет местами правую и левую стороны только потому, что при этом представляем самих себя стоящими за зеркалом.

Чтобы понять это яснее, скомандуйте себе «Направо!» и встаньте лицом на восток, касаясь зеркала левым плечом. Как и раньше, зеркало обращает только ось, перпендикулярную его поверхности. Когда вы так стоите, эта ось проходит у вас слева направо. Теперь вы можете сказать, что зеркало переставляет правую и левую стороны в точном геометрическом смысле, оставляя без изменения оси, направленные вперед-назад и вверх-вниз.

Представьте зеркало, вделанное в потолок или в пол. Это зеркало, как всегда, переворачивает только ту ось, которая находится под прямым углом к его поверхности. В данном случае это ось верх — низ. Это зеркало не меняет положения в пространстве правой и левой сторон или задней и передней, и вы в нем оказываетесь перевернутыми вверх ногами. Однако, представив себя стоящим на голове за зеркалом, вы заметите, что ваш двойник все-таки двигает правой рукой, когда вы двигаете левой. Хотя зеркало переставляет только верх и низ, вам как билатерально симметричному созданию по-прежнему удобно описывать зазеркальный мир, говоря, что там правое стало левым, и наоборот. Независимо от того как зеркало преобразует ваш мир, при отражении его, представив себя в таком преображенном мире, вы каждый раз видите, что правая и левая стороны у вас поменялись местами, и соответственно описываете происшедшую перемену.

Подведем итоги. Когда мы смотрим прямо в зеркало, то не обнаруживаем решительно никаких изменений ни справа, ни слева, ни вверху, ни внизу. Но отражаемый предмет оказывается «вывернутым» вдоль оси, перпендикулярной плоскости зеркала, при этом асимметричная фигура автоматически заменяется на энантиоморфную. Поскольку сами мы существа билатерально симметричные, то находим удобным называть это взаимопревращением правого в левое. Это просто манера выражаться, способ употребления слов.

«Магические зеркала», описанные в гл. 1, которые дают «неперевернутое» изображение, в действительности меняют направление двух осей фигуры! Как обычные зеркала, они меняют местами направления «назад» и «вперед», но в отличие от обычных зеркал они переставляют к тому же правую и левую стороны. Двойное отражение вдоль двух разных осей не превращает фигуру в ее энантиоморфа. Подмигнув перед таким зеркалом правым глазом, вы видите, что отражение моргает глазом, расположенным в левой части зеркала. Воображая, что это вы стоите за зеркалом, повернувшись лицом в другую сторону, вы и говорите, что отражение тоже подмигнуло правым глазом и что никакого превращения не произошло. Если магическое зеркало повернуть на четверть оборота, оно по-прежнему будет обращать ось вперед — назад, но вторая ось, с которой происходит такое же преобразование, теперь окажется направленной сверху вниз, и вы видите ваше лицо перевернутым. Перевернутым, но не зеркально отраженным. Представив себя за зеркалом вниз головой, вы увидите, что, когда вы мигаете левым глазом, «он» тоже мигает левым.

Если вам все это покажется запутанным[3], то перечитайте последние семь абзацев несколько раз и все как следует обдумайте и тогда вам станет совершенно ясным, что происходит с асимметричными предметами при их отражении в обычных и магических зеркалах. В качестве разрядки, прежде чем перейти к рассмотрению более серьезных вопросов, мы в следующей главе расскажем о нескольких простых фокусах и трюках, в которых используются некоторые высказанные выше идеи.

Загрузка...