Глава девятая. Парадокс. Витамин C и двуличье антиоксидантов


Съедай по яблоку в день, и врач тебе не понадобится — гласит народная мудрость. Так ли это? И если так, то почему? Ответ на первый вопрос в наш просвещенный век формулируется просто: если в рацион питания ежедневно включать пять 80-граммовых порций овощей и фруктов, это позволяет снизить риск смерти от сердечного приступа, инсульта и некоторых видов рака, особенно дыхательной и пищеварительной системы. И этот фактор действует вне зависимости от других факторов или привычек, таких как курение, избыточный вес, повышенный уровень холестерина и артериального давления. Большинство людей регулярно съедают по три порции овощей и фруктов. В нескольких широких эпидемиологических исследованиях было показано, что повышение потребления этих продуктов до пяти порций в день может снизить риск развития рака на 20%, а риск сердечного приступа или инсульта — на 15%. Как однажды заметил Клемент Фрейд[55], люди, заботящиеся о своем здоровье, не только чувствуют себя лучше, но действительно живут дольше. В эпидемиологических исследованиях, продолжавшихся на протяжении 17 лет, было показано, что уровень смертности среди 11 тыс. человек, посещавших магазины здорового питания или магазины или клубы вегетарианцев, был в два раза ниже, чем в общей популяции. Это исследование было проведено врачами из Госпиталя Джона Рэдклиффа в Оксфорде и опубликовано в British Medical Journal, а не в каком-нибудь популярном журнале для сторонников здорового образа жизни. Даже с учетом всех методологических сложностей в проведении подобных исследований и моей собственной нелюбви к фруктам приходится признать, что богатая овощами и фруктами диета полезна для здоровья. Трудность заключается в том, чтобы убедить детей и взрослых, особенно жителей севера Европы и США, соответствующим образом изменить рацион питания.

Польза овощей и фруктов не вызывает сомнения, однако эпидемиология питания со всеми связями и корреляциями имеет два измерения. Чтобы разобраться в проблеме, нужно ответить на вопрос «почему?», а это интереснее и сложнее. Ясно, что фрукты и овощи полезны, но это все, что нам известно. Глубину нашего невежества выразили Джон Гаттридж и Барри Холлиуэлл: «Двадцать лет исследований в области диетологии подвели нас к тому, что в „развитых“ странах путь к здоровому образу жизни проходит через употребление большего количества растительной пищи, что было известно уже Гиппократу. Только мы по-прежнему не знаем почему».

Если любого из нас попросят объяснить это наблюдение, я думаю, большинство людей станут рассуждать о витамине C, антиоксидантах и т. п. Реальность, конечно же, гораздо сложнее. Оздоровительный эффект сотен, если не тысяч, биологически активных веществ, выделенных из овощей и фруктов, так и не был окончательно подтвержден. Учитывая невероятное количество разнообразных данных, не приходится удивляться, что мы возвращаемся к нескольким давно известным витаминам, которые действительно заменяют потребление многих других веществ. Хороший пример — исследование Кей-Ти Кхау и ее группы в Кембридже. Результаты были опубликованы в медицинском журнале The Lancet в 2001 г., а затем широко и неверно истолкованы прессой: потребление витамина С продлевает жизнь. На самом же деле, в работе было показано, что риск смерти от различных причин выше у людей с низким уровнем витамина С в плазме крови. Напротив, за время исследований люди с высоким уровнем витамина С в плазме умирали реже. Люди с самым высоким уровнем витамина С умирали вдвое реже, чем люди с самым низким показателем. Кхау и ее соавторы подчеркивали, что не обнаружили связи между приемом добавок витамина С и смертностью. Скорее, наблюдалась связь с общим рационом питания. Авторы не пытались установить количество витамина С и других веществ в каждой порции еды (не из-за лени: постановка специфического вопроса позволяет отсечь несущественные детали). Например, они не измеряли уровень витамина Е или бета-каротина. Если бы их определяли, наверняка нашли бы аналогичную корреляцию, поскольку во фруктах содержится множество различных антиоксидантов. Однако это не означает, что именно они отвечают за снижение уровня смертности. А потому в данном исследовании уровень витамина С в плазме был просто неким усредненным показателем, отражавшим общее потребление фруктов. А о роли самого витамина С нам по-прежнему мало что известно.

Поскольку витамин С, с одной стороны, всем знаком, а с другой стороны, по-прежнему остается загадкой, мы начнем обсуждение функции антиоксидантов именно с него. Часто витамин С называют просто водорастворимым антиоксидантом, но на этом примере можно показать, насколько сложно описать действие антиоксиданта. Вот слова Тома Кирквуда, занимающегося проблемами старения в Университете Ньюкасла, которые он произнес на ритовской лекции[56] службы Би-би-си в 2001 г.:


«Когда молекула витамина С встречает свободный радикал, oна переходит в окисленную форму, а свободный радикал становится неопасным. Затем окисленный витамин С возвращается в исходное состояние под действием фермента, называемого редуктазой. Витамин — как боксер, который выходит на ринг, получает удар в челюсть, отходит в свой угол, чтобы передохнуть, а затем повторяет все сначала».


Описание Кирквуда нельзя назвать неправильным, но оно одностороннее. Эта замечательная простота является источником множества проблем. Да, молекулярная функция витамина С так же проста и однообразна, как подбрасывание монеты, вот только действие оказывается чрезвычайно разнообразным, непредсказуемым и в значительной степени зависит от среды, в которой действует витамин. Как монета может повернуться двумя сторонами, так и витамин С может, с одной стороны, защитить от болезни, с другой стороны, убить опухоль или самого человека. Мне нравится образное высказывание по этому поводу химика и диетолога Уильяма Портера, нехарактерное для научного журнала:


«В списке всех парадоксальных соединений витамин С, наверное, занимает первое место. Вот уж действительно двуликий Янус, доктор Джекилл и мистер Хайд, оксюморон среди антиоксидантов».


Лишь несколько тем вызывают в медицинской среде такую бурную и бессмысленную дискуссию, как функция витамина С. И если искать виновного, придется указать на знаменитого химика, борца за мир и дважды лауреата Нобелевской премии Лайнуса Полинга. Я расскажу немного о его жизни, поскольку к его взглядам нельзя относиться с пренебрежением. Но, как мы увидим далее, принимать их без всякой критики тоже нельзя.

Совершенно несправедливо, если память о Полинге окажется навсегда связанной с его противоречивыми идеями о роли витамина С. Никто другой не оставил такой глубокий след в химии ХХ в., как Полинг. Один из рецензентов классического учебника Полинга «Природа химической связи и структура молекул и кристаллов», вышедшего в 1939 г., писал, что благодаря Полингу химию теперь можно не только выучить, но и понять. Первую Нобелевскую премию Полинг получил в 1954 г. «за исследования природы химической связи и их приложение к изучению сложных соединений». Это означает, что Полинга наградили не за какое-то отдельное исследование, а за цикл работ, выполненных на протяжении 20 лет, что редко случалось в истории Нобелевского института. Все ранние исследования Полинга были связаны общей идеей — применением законов квантовой механики к анализу структуры химической связи. Полинг находил длину и направление отдельных связей с помощью методов рентгеновской дифракции, магнетизма и калориметрии (измерения количества тепла, выделяемого или поглощаемого в ходе химической реакции). На основании полученных значений он воссоздавал трехмерные структуры сложных молекул.

Одним из первых и важнейших достижений Полинга было применение к анализу структуры молекул теории резонанса, в соответствии с которой электрон «делокализуется» (распределяется) в молекуле таким образом, чтобы максимально рассредоточить заряд и тем самым стабилизировать молекулы. Это очень помогает при анализе функции витамина C и других антиоксидантов.

В середине 1930-х гг. Полинг начал использовать свои аналитические методы для изучения структуры белков. Он продемонстрировал роль слабых электрических зарядов (водородных связей) в стабилизации трехмерной структуры белка и первым описал основные элементы структуры белка, такие как альфа-спирали и бета-слои, которые теперь известны любому студенту-биохимику. В начале 1950-х гг. Полинг попытался исследовать неизвестную на тот момент структуру ДНК. В книге «Двойная спираль» Джеймс Уотсон описывал смятение, которое охватило их с Френсисом Криком, когда они узнали, что проблемой ДНК занялся «величайший химик мира». Они ускорили работы, применяя методы самого Полинга, и страшно обрадовались, когда поняли, что тот допустил банальную ошибку.

К этому времени Полинг при поддержке своей жены, неутомимой Авы Хелен, стал сторонником активной антивоенной политики. Начиная с 1946 г. и на протяжении 1950-х и 1960-х гг. он много говорил о последствиях ядерных катастроф и, в частности, о риске врожденных дефектов и рака. В 1957 г. он составил петицию о запрещении испытаний ядерного оружия и в конечном итоге представил в Белый дом подписи 11 тыс. ученых, в числе которых были Альберт Эйнштейн, Бертран Рассел и Альберт Швейцер. Эта петиция ускорила подписание Договора о запрещении испытаний ядерного оружия, который вступил в силу 10 октября 1963 г., в тот же день, когда Полингу была вручена Нобелевская премия мира.

Антивоенная деятельность Полинга вызывала недовольство американского правительства в первые годы холодной войны, когда Комитет по антиамериканской деятельности и сенатор Маккарти вели активную антикоммунистическую «охоту на ведьм». В начале 1950-х гг. Полингом заинтересовалось ФБР, и ему было отказано в возобновлении паспорта из-за «недостаточно убедительных антикоммунистических взглядов». Только в 1954 г., когда ему вручили Нобелевскую премию по химии и газета New York Times предала гласности определенные материалы, ему вновь разрешили выезжать за пределы страны. Сложности возникали и на службе, в Калифорнийском технологическом институте. Национальный институт здоровья США сократил финансирование работ Полинга и еще 40 ученых, и в 1963 г. Полинг был вынужден уйти с факультета. После нескольких лет работы в Центpe изучения демократических институтов в Санта-Барбаре, где он занимался проблемами войны и мира, в 1969 г. он наконец получил место на химическом факультете Стэндфордского университета. Здесь он продолжал исследования витамина С и других «ортомолекулярных» соединений, к которым он относил необходимые для жизни вещества, в норме присутствующие в человеческом организме. Позднее Полинг занялся организацией Института ортомолекулярной медицины Лайнуса Полинга, которому посвятил оставшиеся годы жизни.

Вот краткая биография человека, опубликовавшего в 1970 г. чрезвычайно популярную книгу «Витамин С и простуда», в которой он утверждал, что большие дозы витамина С могут предотвратить и победить простуду. Полинг и его жена сами следовали этим рекомендациям, принимая ежедневно от 10 до 40 г витамина С (что в несколько сотен раз выше рекомендованной суточной дозы), добавляя ложку витамина даже в апельсиновый сок. В последующие двадцать лет Полинг стал делать еще более смелые заявления, утверждая, что «мегадозы» витамина могут излечить от шизофрении и сердечно-сосудистых заболеваний, предотвратить инфаркт и рак и, возможно, продлить жизнь на несколько десятков лет. Самой спорной из всех идей Полинга и поддержавшего его шотландского онколога Эвана Камерона была идея о внутривенном введении витамина C онкологическим больным на поздних стадиях заболевания, что якобы позволяло продлить жизнь в четыре раза, а в некоторых случаях даже вызвать полную ремиссию. В целом медицинское сообщество отреагировало на это предложение с недоверием, однако в Клинике Майо в Рочестере (Миннесота) были проведены три небольших клинических испытания на онкологических больных на поздней стадии заболевания. Ни в одном из трех случаев положительного эффекта обнаружено не было. Полинг и Камерон утверждали, что испытания не могли дать результата, поскольку проводились неправильно: витамин С давали пациентам недостаточно долго и назначали в виде таблеток, а не внутривенно. В 1989 г. Национальный институт здоровья согласился рассмотреть 25 случаев, выбранных Камероном, которые могли бы подтвердить положительный эффект «мегадоз» витамина С при лечении онкологических больных. В ответном письме, направленном Полингу в 1991 г., говорилось, что эти случаи не являлись достаточным доказательством положительной роли витамина С.

Полинг был великаном ХХ в., и его труды заложили основы современной химии. Возможно, он проявлял невыносимую самоуверенность, но не непогрешимость, как выяснили Уотсон и Крик. Он всегда шел нестандартными путями. В книге «Двойная спираль», написанной еще до обращения Полинга к ортомолекулярной медицине, Уотсон называл методы Полинга в химии скорее интуитивными, чем математическими, да и сам Полинг говорил о своем подходе как о «стохастическом». Полинг, имевший независимый характер, ощущал предательство научной среды и защищался, а иногда позволял себе и персональные выпады. Его опыт сказался на его отношении к фармацевтической индустрии и к врачам, которых он называл «индустрией болезней» и обвинял в обмане населения и заинтересованности в расширении рынка лекарств. Врачи со своей стороны не признавали идей Полинга о пользе витамина С и считали их жульничеством. Журналы отказывались печатать его статьи, и споры переросли в публичные оскорбления. Так возник тупик, выход из которого не найден и по сей день. Полинг умер в 1994 г. в возрасте 93 лет обиженным и ожесточенным. Если он был прав, он решил одну из самых серьезных проблем человечества — нашел способ стареть без болезней, а мы, дураки, отвернулись от предложенного им простого решения. Однако старческие недуги так и не были побеждены даже теми, кто следовал примеру Полинга. Простим того, кто считает, что он ошибался, и попробуем разобраться, имелась ли в идеях Полинга доля истины.


Витамин С получил статус витамина (компонента питания, необходимого организму в следовых количествах) в связи с одним любопытным обстоятельством. За исключением высших приматов, морских свинок и фруктовых летучих мышей, практически все растения и животные сами синтезируют витамин С. А вот мы должны получать его с пищей, поскольку общий предок высших приматов когда-то потерял ген гулонолактоноксидазы — фермента, катализирующего последнюю стадию синтеза витамина С. В результате все человечество страдает от этого врожденного метаболического дефекта. Полинг постоянно привлекал внимание к этому факту: он показывал пробирку с витамином C, синтезированным за один день в организме козы, и приговаривал: «Я больше верю в биохимию козы, чем в советы докторов»[57].

Этот, казалось бы, справедливый аргумент необходимо опровергнуть. Потеря гена гулонолактоноксидазы нашими предками не была ошибкой, иначе естественный отбор уничтожил бы этих существ. Но, поскольку утратившие этот ген организмы в конечном итоге заняли доминирующее положение среди приматов, такая потеря должна была обеспечивать какое-то преимущество. Одну идею по этому поводу высказали Холлиуэлл и Гаттридж. Они акцентировали внимание на том, что в реакции синтеза витамина С при участии гулонолактоноксидазы в качестве побочного продукта выделяется пероксид водорода. Это означает, что активный синтез витамина С в организме таких животных, как крысы, может приводить к окислительному стрессу. Возможно, лучше потреблять много овощей и фруктов, содержащих готовый витамин, чем синтезировать его. Один из аргументов Полинга состоял в том, что гориллы ежедневно получают с пищей примерно 5 г витамина С. Наши с вами предки из эпохи палеолита, по-видимому, потребляли ежедневно около 400 мг.

Недостаточное употребление витамина C может стать причиной цинги (скорбута). Теперь эта болезнь встречается редко, но когда-то была страшным бичом, уносившим жизни многих моряков, лишенных свежей пищи на протяжении многих месяцев плавания. Цинга косила солдат во время военных кампаний — от Крестовых походов до Первой мировой войны. Болезнь угрожала путешественникам, которые иногда проводили в море несколько месяцев или даже лет. Один такой случай произошел в 1536 г.: тогда цингой заболели 100 из 110 человек из команды французского мореплавателя Жака Картье, основавшего Монреаль. Это случилось зимой, когда корабли Картье застряли во льдах реки Святого Лаврентия. Картье писал, что у больных слабели и опухали ноги и сильно кровоточили десны. Другие симптомы цинги — анемия, кровоподтеки на коже, слабость, сердечная недостаточность; в конечном итоге может наступить смерть. Через 30 лет после той страшной зимы для предотвращения цинги голландский врач Ронсеус советовал морякам есть апельсины, а в 1639 г. английский врач Джон Вудал рекомендовал лимонный сок. Однако Британское адмиралтейство с характерным безразличием игнорировало эти рекомендации даже после гибели половины состава экспедиции лорда Энсона во время кругосветного путешествия в 1740 г. Дo возвращения Энсона в Англию в 1744 г. из 1955 моряков 320 умерли от лихорадки и дизентерии, а 997 — от цинги.

Возмущенный этой ужасающей ситуацией шотландский военно-морской врач Джеймс Линд в 1753 г. написал «Трактат о цинге», в котором тоже рекомендовал морякам пить сок цитрусовых. Однако, в отличие от предшественников, он доказал свою теорию в первых в истории медицины клинических испытаниях на борту английского военного корабля «Солсбери» в 1747 г. Линд проверил несколько существовавших на тот момент способов лечения на 12 матросах, заболевших цингой. Двое ежедневно получали кварту сидра, двое пили купорос, двое — уксус, двое — морскую воду, двое ели апельсины и лимоны, а еще двое получали снадобье из чеснока, редьки, перуанского бальзама и мирры. Те двое, что ели апельсины и лимоны, очень быстро поправились и стали ухаживать за остальными. Слабые признаки улучшения были замечены еще лишь у двух человек, получавших сидр. Любопытно, но сам Линд воспринимал цингу не как результат авитаминоза, а как заразное заболевание, распространяющееся во влажном воздухе. Он считал, что лимонный сок, как мыло, может расщепить вредные частицы.

Рекомендации Линда воплотил в жизнь капитан Кук во время кругосветных плаваний в 1768 и 1775 гг. Кук был чрезвычайно требовательным командиром и придирчиво следил за рационом питания экипажа, соблюдением чистоты, проветриванием помещений и моральным духом команды. Он заставлял моряков есть сырые лимоны, апельсины, лук, капусту, а также квашеную капусту и солод. Почти за шесть лет, проведенных в море, из всей команды Кука от цинги погиб лишь один человек. Но только в 1795 г. Британское Адмиралтейство признало справедливость требований Линда и согласилось снабжать британских моряков лимонным соком. Благодаря усилиям морского врача сэра Гилберта Блейна, активно распространявшего информацию о пользе лимонного сока, были достигнуты потрясающие результаты. Раньше в военно-морской госпиталь Хаслар ежегодно посыпало около 1000 больных цингой, тогда как между 1806 и 1810 гг. таких больных было всего двое. Как позднее заметил историк Рой Портер, лимоны сыграли в победе над Наполеоном не менее важную роль, чем Нельсон. Однако это продолжалось недолго. Как обычно, в целях экономии Адмиралтейство заменило лимоны более дешевыми лаймами, которые содержат в четыре раза меньше витамина С. И цинга вернулась. К болезни добавилось еще и прозвище: британских моряков стали называть «лайми».

Идею о том, что цинга — не инфекционное заболевание, а результат авитаминоза, в 1840-х гг. развивал профессор медицины Джордж Бадд из Королевского колледжа Лондона, прозванный «пророком Баддом». В серии статей, опубликованных в London Mеdical Gazette под заголовком «Нарушения, вызванные недостаточным питанием», Бадд пророчествовал, что цингу вызывает «недостаток какого-то важнейшего элемента, который в ближайшем будущем будет открыт с помощью органической химии или экспериментов физиологов».

Однако пророчество Бадда сбылось только через 93 года. Отчасти это связано с тем, что концепцию авитаминоза затмила выдвинутая Пастером микробная теория заболеваний, которую с энтузиазмом стали применять ко всем болезням без разбора. И все же в конце 1920-х гг. несколько ученых попытались выделить «противоцинготный фактор» из апельсинов, лимонов, капусты и тканей надпочечников. Некоторым исследователям, включая венгерского биохимика Альберта Сент-Дьёрди, удалось выделить белые кристаллы кислого сахара, свойства которого соответствовали свойствам витамина С, но химическая структура этого вещества оставалась загадкой. Сент-Дьёрди предложил назвать вещество «игнозой» (окончание «оза» означало принадлежность вещества к классу сахаров, а корень «игн» указывал на его неизвестное происхождение). Название было отвергнуто, и Сент-Дьёрди предложил другое — «годноза» («божественный сахар»), но в конечном итоге в единственной фразе в статье, опубликованной в 1933 г. в журнале Nature, он употребил название «аскорбиновая кислота», поскольку вещество помогало от цинги (скорбута). Дальнейшие исследования продвигались очень быстро. В том же году аскорбиновую кислоту независимым путем синтезировали швейцарский химик польского происхождения Тадеуш Рейхштейн и английский химик-органик сэр Уолтер Xoуopc. Так что витамин C — не только первый витамин, химическую структуру которого удалось установить, но и первый витамин, синтезированный химическим путем.


Забавно, что отношение к витамину С как к лекарству от цинги помешало исследованию его нормальной функции в организме. При расчете рекомендованной суточной нормы потребления витамина С исходили из необходимости предотвращения заболевания, а не из какого-либо положительного критерия. Для предотвращения клинических симптомов цинги нужно совсем немного витамина C. В серии исследований, проведенных в тюрьмах Айовы в 1960-х гг., было показано, что для устранения симптомов цинги достаточно всего 10 мг витамина в сутки. При повышении суточной дозы до 60 мг витамин C начинает выводиться с мочой, что указывает на его избыток в организме. Идея о том, что при потреблении 60 мг витамина С в сутки достигается насыщение организма, подтверждается скоростью распада витамина: в соответствии с результатами исследований в Айове продукты распада витамина выводятся с мочой со скоростью около 60 мг в сутки. Именно эти три фактора (предотвращение цинги с поправкой на ошибку, скорость выведения витамина С и скорость выведения продуктов его распада) стали основой рекомендуемой суточной нормы потребления (РСНП) витамина С, равной 60 мг.

Казалось бы, все ясно, но дело обстоит гораздо сложнее. В 1990-х гг. Марк Левайн из Национального института здоровья обратил внимание на практические и теоретические несоответствия. Левайн входил в состав комиссии, занимавшейся анализом 25 примеров благотворного влияния высоких доз витамина С, представленных Камероном, и с тех пop активно стремился наладить диалог между сторонниками традиционной медицины и приверженцами лечения витамином С.

Левайн не только поставил под сомнение точность ранних измерений концентрации витамина С и продуктов его распада, которые осуществлялись неспецифическими методами, но и более подробно проанализировал три фактора в основе определения РСНП. Во-первых, он выяснил, что для предотвращения цинги, по-видимому, требуется значительно меньше витамина С, чем для поддержания нормальных функций организма. Во-вторых, выделение с мочой не обязательно коррелирует с насыщением тканей организма: для одних веществ это так, для других иначе, а в случае витамина С это неизвестно. В-третьих, скорость распада витамина С зависит от ряда факторов, включая дозу препарата. При приеме высоких доз распад происходит быстрее, возможно, по той причине, что организму не требуется запасать это ценное вещество. Это означает, что оценки скорости расщепления, сделанные при приеме низких доз (30 или 60 мг), могут быть неверными. Таким образом, Левайн поставил под сомнение справедливость исходных предпосылок для определения РСНП витамина С.

Левайн попытался сформулировать собственные рекомендации по рациональному приему витамина С на основе известных биохимических процессов в организме и уровня насыщения крови и других тканей. Тем, кому интересен результат, сразу скажу, что, по данным Левайна, здоровый человек должен получать 200 мг витамина в сутки. Повышение дозы до 400 мг не давало очевидного преимущества, а доза выше 1 г могла быть опасна, поскольку в таком количестве витамин может вызывать диарею и способствовать образованию камней в почках. Суточная доза витамина от 200 до 400 мг соответствует употреблению пяти порций овощей и фруктов, так что те, кто правильно питается, не нуждаются в дополнительном приеме витамина. Мы увидим далее, что есть и другие причины не прибегать к помощи витаминов в виде пищевых добавок. В то же время, по данным Левайна, суточная норма 60 мг (в СШA с апреля 2000 г. повышена до 90 мг) является заниженной. Чтобы проследить за ходом его рассуждений, а также понять антиоксидантную функцию витамина, нужно подробнее рассмотреть действие витамина С в организме.


Витамин С участвует во множестве биохимических реакций, поддерживающих нормальную физиологическую функцию человеческого организма. Лучше всего изучена роль витамина С в качестве кофактора (дополнительного фактора, необходимого для проявления активности ферментa) в синтезе коллагена.

Коллагеновые волокна по масce cоcтавляют дo 25% всего белка организма. Это вещество всем знакомо как желатин. Коллагеновые волокна — важнейший структурный и защитный элемент соединительных тканей, таких как кости, зубы, хрящи, сухожилия, кожа и кровеносные сосуды. При недостаточности витамина С коллагеновые волокна не могут нормально формироваться, с чем и связаны многие проявления цинги. Кровеносные сосуды становятся хрупкими, раны плохо заживают. Вероятно, именно повреждение сосудов является причиной кровоточивости десен, отека суставов, внезапного появления кровоподтеков. В конечном итоге, когда сосуды больше не могут удерживать жидкость, падает кровяное давление, и развивается сердечная недостаточность.

К другим характерным, но неспецифическим симптомам цинги относятся общее недомогание, слабость и анемия. От хронической усталости страдают миллионы людей на Земле; иногда она является проявлением «доклинической» формы цинги, иногда связана с чем-то другим. В «Трактате о цинге» Линд называл усталость ранним и неизменным симптомом заболевания. В принципе, усталость можно связать с нарушением синтеза коллагена, но, скорее всего, причина заключается в нарушении зависимого от витамина С синтеза аминокислоты карнитина. Он нужен для сжигания жиров. Выделяющиеся при расщеплении жиров жирные кислоты переносятся в митохондрии, где окисляются с выделением энергии. Однако жирные кислоты не могут попасть в митохондрии самостоятельно, им нужен переносчик — карнитин. Он также отвечает за выведение неизрасходованных органических кислот из митохондрий в цитоплазму. При недостатке витамина С организм не может синтезировать достаточно карнитина для получения энергии из жиров, а митохондрии засоряются токсичными органическими кислотами, что ослабляет эффективность извлечения энергии даже из глюкозы. Так что усталость — не такая уж высокая плата за столь серьезные нарушения.

Витамин С также задействован в работе нервной и эндокринной систем, поддерживающих организм в нормальном физиологическом и психологическом состоянии. Например, витамин C нужен для синтеза норадреналина — родственника адреналина, модулирующего наши реакции на стресс. Он нужен и для правильного функционирования фермента пептидил-глицин-альфа-амидирующей монооксигеназы (ПАМ), который содержится в разных тканях организма, включая гипофиз. Фермент отщепляет концевые фрагменты у многих незрелых пептидных гормонов и нейромедиаторов, тем самым активируя их. Без активации под действием ПАМ гормоны остаются нефункциональными. Чтобы вы удостоверились в том, что витамин C — не только водорастворимый антиоксидант и кофактор синтеза коллагена, перечислю лишь несколько пептидов. активируемых ПАМ: кортиколиберин (стимулирует выработку стероидных гормонов), гормон, высвобождающий гормон роста (стимулирует рост и влияет на энергетический метаболизм), кальцитонин (cпocoбcтвует всасыванию фосфата кальция и его распределение в костной ткани), гастрин (самый мощный стимулятор секреции желудочного сока), окситоцин (стимулятор секреции молока и сокращений матки), вазопрессин (регулирует водный баланс и активность кишечника), секретин (стимулирует секрецию ферментов поджелудочной железы и желчи), вещество Р (мощный вазодилататор и нейромедиатор, регулирующий восприятие боли, тактильных ощущений и температуры). Учитывая этот широчайший спектр действия, думаю, всем понятна степень зависимости нашего физиологического состояния от витамина C.

Но это еще не все. Витамин С нужен белым клеткам крови — лейкоцитам. При бактериальной инфекции первую линию защиты обеспечивает группа лейкоцитов, называемых нейтрофилами, которые высасывают из окружающей среды витамин С с помощью миниатюрных белковых насосов, встроенных в клеточные мембраны. За несколько минут концентрация витамина C внутри клеток повышается в 10 раз, а если инфекционной процесс продолжается, то и в 30 раз по сравнению с концентрацией в покоящихся нейтрофилах или в 100 раз по сравнению с концентрацией в плазме даже тех людей, которые принимают добавки витамина.

Вот в чем заключается антиоксидантное действие витамина С в соответствии с описанием Тома Кирквуда, которое я привел в начале главы. Нейтрофилам эта дополнительная защита нужна, чтобы пережить ими же затеянную битву. Их можно сравнить с солдатами, натягивающими противогазы, прежде чем выпустить во врага облако хлора. Вместо хлора нейтрофилы выпускают множество свободных радикалов и другие мощные окислители (включая хлорноватистую кислоту — производное хлора), уничтожающие бактерий[58]. Витамин С предотвращает или замедляет гибель самих нейтрофилов и ускоряет гибель бактерий, которые не могут поглощать витамин С или продолжать пользоваться им в обедненном локальном окружении. Левайн отмечал, что поглощение витамина С нейтрофилами можно использовать в фармацевтических целях, учитывая распространение устойчивых к антибиотикам бактерий.

А что можно сказать об анемии? Она также является симптомом цинги, но в данном случае речь идет не о физиологическом нарушении, как обсуждалось выше. Витамин C действует на неорганическое железо, содержащееся в пище, в желудке и в кишечнике, превращая его из нерастворимой формы (Fe3+) в растворимую (Fе2+), которая может всасываться в кишечнике. (Это обратная реакция по отношениюк той, которая происходила во всепланетном масштабе в докембрийских океанах и приводила к образованию полосатых железных гор; см. главу 3.) При недостаточности витамина С всасывается слишком мало железа, чтобы снабжать эритроциты гемоглобином (который содержит железо), что и приводит к анемии.



Столь широкий спектр функций создает вокруг витамина C магическую ауру. Однако в каждом случае на молекулярном уровне витамин С выполняет одну и ту же работу, хотя результаты могут быть противоположными — как при подбрасывании монетки. Чтобы понять, что происходит, давайте более подробно рассмотрим синтез коллагена, на примере которого можно не только наблюдать за действием витамина C, но и объяснить его антиоксидантные свойства и потенциальную опасность.

Коллаген синтезируется лишь в присутствии кислорода (см. главу 4). Кислород, как и витамин C, нужен для модификации некоторых аминокислот в составе коллагена уже после их включения в белок. Модификация заключается в гидроксилировании (присоединении дополнительных ОН-групп) белковых молекул. Эти группы обеспечивают образование перекрестных сшивок между молекулами коллагена: сначала формирование тройных нитей коллагена, а затем их объединение в более толстые волокна. Именно эти перекрестные сшивки объясняют невероятную прочность коллагена. Если нет витамина С и кислорода, перекрестные сшивки не образуются, и соединительная ткань ослабевает. Кроме того, негидроксилированный коллаген не выводится, а удерживается в синтезирующих его клетках. Он менее стабилен, более чувствителен к нагреванию и легче расщепляется пищеварительными ферментами. Желе из такого коллагена вряд ли украсит праздничный стол.

Механизм гидроксилирования коллагена выдает секрет витамина С: он является донором электронов. Атом кислорода в гидроксильной группе происходит из молекулярного кислорода. Чтобы присоединить этот кислород, каждый из двух атомов в молекуле должен получить электрон. Они обычно передаются парами, и лишь немногие соединения могут отдать единственный электрон и при этом не потерять устойчивость и не стать чересчур реакционноспособными, например металлы, которые могут существовать в нескольких состояниях окисления, и витамин С. В биохимических реакциях витамин С всегда отдает электроны. И никак иначе. Нужно сказать, он не разбрасывается электронами направо и налево: в физиологических условиях он с наибольшей вероятностью отдает их железу или меди[59]. Именно это происходит при синтезе коллагена. Витамин C отдает электрон железу, находящемуся в активном центре фермента гидроксилирования. А железо передает электрон кислороду, который теперь может присоединяться к аминокислоте в молекуле коллагена. При этом железо окисляется и переходит в биологически неактивную форму (Fe3+), в которой существует до тех поp, пока опять не получит электрон от витамина С.

Таким образом, роль витамина С состоит в регенерации биологически активной формы железа путем передачи электрона окисленной форме. Гидроксилирующий фермент действует как карусель, используя железо для присоединения кислорода к аминокислотным остаткам в белке. Снабжая железо электронами, витамин С обеспечивает безостановочное движение карусели.

Триумвират в составе железа (или меди), витамина С и кислорода является важнейшим элементом практически любого физиологического механизма с участием витамина C. Как минимум восемь ферментов используют витамин C в качестве кофактора, и все эти ферменты содержат железо или медь. Все они присоединяют кислород к аминокислотам с помощью железа или меди, и все используют витамин С для регенерации железа или меди в активной форме. По сути та же самая реакция обеспечивает всасывание железа в кишечнике. В этом случае витамин C передает электрон окисленному железу, переводя его в растворимую форму, которая может всасываться.

Почему витамин С так активно используется в качестве донора электронов? По двум причинам. Во-первых, витамин C очень хорошо растворяется в воде, поэтому он может концентрироваться в замкнутом пространстве, ограниченном мембранами (состоящими из непроницаемых для витамина липидов). Например, синтез норадреналина из дофамина происходит в окруженных мембранами везикулах в клетках коры надпочечников. Концентрация витамина С в везикулах может в 100 раз превышать его концентрацию в плазме крови. По мере расходования витамина С ферментом дофамин-монооксигеназой электроны проходят через мембрану (с помощью железосодержащего белка цитохрома b6s), чтобы регенерировать витамин С в везикулах. Таким образом, на протяжении дней или недель клетки используют запасенный витамин С и не зависят от колебаний его концентрации в плазме, вызванных изменениями рациона питания.

Вторая причина широкого использования витамина в качестве донора электронов заключается в том, что продукт реакции сравнительно стабилен и неактивен. Когда витамин С отдает электрон, он превращается в радикал аскорбиновой кислоты. По сравнению с другими радикалами он не очень активен. Его структура стабилизируется за счет делокализации электрона — того самого эффекта резонанса, изучением которого в конце 1920-х гг. занимался Лайнус Полинг. Это означает, что путем передачи электрона витамин С может блокировать цепные свободнорадикальные реакции, поскольку радикал аскорбиновой кислоты не участвует в цепных реакциях.

Несмотря на низкую реакционную способность, радикал аскорбиновой кислоты обычно отдает и второй электрон, превращаясь в дегидроаскорбат. Эта молекула неустойчива, и ее необходимо быстро «связать», иначе она подвергается спонтанному и необратимому распаду и выводится из организма. Именно по этой причине человеку требуется постоянно пополнять запасы витамина С, хотя, в принципе, организм умеет ограничивать потери витамина путем рецикла дегидроаскорбата. Есть несколько ферментов, которые связывают дегидроаскорбат и регенерируют витамин С. Обычно эти ферменты отбирают два электрона у маленького пептида глутатиона и переносят их на дегидроаскорбат. Поскольку в этом процессе происходит перенос пары электронов, регенерация витамина С не сопровождается образованием свободных радикалов.


Таким образом, «подбрасывание монетки» в случае витамина С сводится к передаче одного электрона (или двух с превращением в дегидроаскорбат). Регенерация из дегидроаскорбата происходит за счет приема пары электронов от глутатиона. Этот цикл объясняет функцию витамина не только в качестве кофактора, но и в качестве антиоксиданта. Но хотя витамин С предпочитает отдавать электроны железу или меди, другие молекулы, желающие пpиобрести один электрон, тоже могут забрать его у витамина С. К числу таких молекул относятся многочисленные свoбодные радикалы (кoторые по определению содержат один распаренный электрон; см. главу 6).

Когда в реакцию вступает свободный радикал, он обычно отнимает электрон у другого реагирующего вещества и превращает его в радикал. Тот, в свою очередь, отнимает электрон у соседней молекулы. Цепная реакция продолжается до тех пор, пока два свободных радикала не прореагируют между собой, нейтрализуя друг друга, или пока не образуется малоактивный свободный радикал. Витамин С «гасит» цепную реакцию, поскольку его свободный радикал — радикал аскорбиновой кислоты — обладает низкой активностью. Поэтому в присутствии витамина С цепная реакция затухает. Аналогичным образом ведет себя жирорастворимый витамин Е (альфа-токоферол). Он содержится не в растворе, а в мембранах и действует совместно с витамином С на границе мембран и цитозоля (водного содержимого цитоплазмы, окружающего внутриклеточные органеллы). В реакции витамина Е со свободными радикалами тоже образуются стабилизированные за счет резонанса неактивные радикалы. Радикалы токоферола вновь превращаются в витамин Е, забирая электроны у витамина С.

Как я упомянул в начале главы, эти простые повторяющиеся реакции таят в себе большую опасность — это темная сторона действия витамина С. Мы уже обратили внимание на связь между витамином С, железом и кислородом. Когда витамин С реагирует с железом и кислородом, он выступает в роли донора электронов, но не в роли антиоксиданта. Напротив. Регенерируя активную форму железа внутри фермента, витамин C стимулирует присоединение кислорода, другими словами, помогает окислять субстрат. Таким образом, важнейшая физиологическая функция витамина С заключается в его проoксидантном, а не в антиоксидантном действии.

Когда железо находится в активном центре фермента, это сравнительно безопасно — железо там удерживается, как лошадь в шорах, которая делает только то, что ей велят. Совсем другое дело, когда железо находится в растворе. Растворенное железо может реагировать неконтролируемым образом. Мы говорили об этом в главе 6, помните реакцию Фентона? Железо реагирует с пероксидом водорода с образованием чрезвычайно активных гидроксильных радикалов и неактивного окисленного железа. Гидроксильные радикалы немедленно взаимодействуют с соседними молекулами, инициируя цепные реакции. Эти опасные реакции начинаются только в присутствии свободного железа и заканчиваются при его исчерпании. Мы видели, что опасность супероксидных радикалов заключается в их способности регенерировать активное железо, возобновляя тем самым реакцию Фентона. Делают они это путем передачи электронов. И витамин С может отдавать электроны и регенерировать активное железо. Таким образом, витамин С может не только выступать в роли антиоксиданта, но и усиливать свободнорадикальные процессы. Теоретически он может быть как антиоксидантом, так и прооксидантом.


К сожалению, эта возможность не только теоретическая. Стандартный тест на антиоксидантную активность основан на потенциально опасной активности витамина С. Тест начинают со стимуляции свободнорадикальной реакции в препарате клеточных мембран, а затем измеряют способность антиоксидантов останавливать этот процесс. Для запуска цепной реакции используют смесь железа и витамина С: железо — для катализа, витамин — для регенерации активного железа. Если бы такая реакция происходила в организме, это была бы катастрофа.

Возникают два вопроса. Выступает ли витамин С в роли прооксиданта в организме, нанося ему ущерб? И если нет, то почему: что ему мешает? Эти вопросы вызывают в научной среде массу споров, и точных ответов мы не знаем до сих пор. Тем не менее потенциальная опасность витамина С позволяет оценить работу антиоксидантной «сети» в клетке и задуматься о том, что идеи Полинга и Камерона относительно противораковой активности витамина С, возможно, имели под собой какое-то основание.

Должен заметить, что у нас нет почти никаких подтверждений прооксидантной активности витамина С в человеческом организме. Однако некоторые наблюдения свидетельствуют, что организм знает об этой опасности. В частности, концентрация витамина в плазме крови очень строго контролируется. Даже при приеме «мегадоз» витамина его концентрация в плазме практически не изменяется. Контроль осуществляется на уровне всасывания и на уровне выведения. При приеме высоких доз витамина его всасывание в кишечнике ослабевает. Дело в том, что высокие дозы витамина оказывают слабительное действие и вызывают диарею[60]. Некоторые сторонники лечения витамином С даже призывают повышать дозу до предела «толерантности кишечника», то есть употреблять столько, сколько необходимо, чтобы спровоцировать диарею — признак достижения максимального всасывания. Такой подход не работает. При приеме 1 г витамина в сутки из кишечника всасывается менее 50%, причем бóльшая часть затем выводится с мочой. Легкорастворимый витамин С фильтруется почками и лишь отчасти подвергается обратному всасыванию, за исключением случаев острой недостаточности. Витамин начинает выделяться с мочой при приеме дозы от 60 до 100 мг в сутки. При приеме 500 мг практически все выводится этим путем. Кровь и другие жидкости организма насыщаются витамином при суточном потреблении 400 мг. Вне зависимости от того, сколько дополнительного витамина С вы примете, eгo содержание в организме не увеличится.

Эта информация важна сама по себе, но, кроме того, подчеркивает необходимость строгой регуляции уровня витамина С в организме. Пока никто не доказал, что витамин C может быть токсичен, но также никто не доказал, что он работает в организме в качестве антиоксиданта. Мы знаем, что он может быть антиоксидантом и, возможно, выступает в этой роли, но твердой уверенности у наc нет. Вот что писал в 1999 г. директор Института Лайнуса Полинга профессор Балц Фрей:


«Существующих доказательств недостаточно, чтобы заключить, что прием витаминов и антиоксидантов в качестве пищевых добавок действительно ослабляет окислительные повреждения в организме человека».


А что можно сказать о темной стороне «монетки» — о потенциальной опасности для организма? Если потенциальная токсичность витамина С связана с его взаимодействием с железом, значит, наибольший риск возникает при заболеваниях, сопровождающихся какими-либо нарушениями метаболизма железа.

Одно из таких состояний — перегруженность организма железом. Удивительно, но организм не имеет специфических механизмов для выведения избытка железа (за исключением менструальных кровотечений или отшелушивания клеток выстилки кишечника). Поэтому всасывание железа строго контролируется. Наследственное генетическое заболевание гемохроматоз связано с нарушением регуляции всасывания железа в кишечнике. В организм попадает слишком много железа, и со временем (к 40 годам или позднее, в зависимости от рациона питания) накопленное железо начинает представлять опасность. Свободное железо появляется в крови, что может привести к ужасным последствиям. Без лечения у таких людей нарушается функция печени (цирроз или рак), снижается масса тела, наблюдается избыточная пигментация кожи, воспаление суставов, диабет и сердечная недостаточность. Это одно из самых распространенных генетических заболеваний: ему подвержено около 0,5% европейцев и североамериканцев[61].

Теоретически в подобных ситуациях витамин С способен проявлять себя двояко. Во-первых, он может усиливать всасывание железа в кишечнике. У нас нет данных, свидетельствующих о накоплении железа в организме здоровых людей, принимающих «мегадозы» витамина C, но мы ничего не знаем о том, как прием больших доз витамина скажется на состоянии больных гемохроматозом. Во-вторых, витамин С может превращать избыток железа в активную форму, катализирующую свободнорадикальные реакции. Опять-таки, мы не знаем, может ли это сдвинуть баланс антиоксидантного/прооксидантного действия витамина у таких больных. Бóльшая часть наблюдений указывает на то, что не может, однако в некоторых случаях был замечен негативный эффект. Например, один несчастный молодой австралиец целый год принимал высокие дозы витамина С, пока не попал в больницу с острой сердечной недостаточностью. Через восемь дней он умер, как выяснилось, от гемохроматоза. Врачи пришли к выводу, что течение заболевания могло быть ускорено избытком витамина С.

Но давайте рассмотрим ситуацию в другом ракурсе. «Темная сторона» действия витамина С может оказаться полезной для противораковой терапии. Из лабораторных экспериментов известно, что витамин С убивает опухолевые клетки в пробирке, и его противоопухолевая активность зависит от наличия кислорода и железа. Кроме того, витамин уничтожает возбудителя малярии на определенной стадии развития, сопровождающейся активным накоплением железа из гемоглобина. Может ли это объяснять данные Полинга и Камерона? Вполне вероятно. Ядро крупной опухоли часто состоит из мертвых или умирающих клеток, постепенно высвобождающих железо. Кроме того, в опухолевых клетках может нарушаться регуляция метаболизма железа. Радиотерапия и химиотерапия тоже способствуют временному повышению содержания железа в крови, возможно, отчасти за счет железа из опухолевых клеток. Поэтому вполне вероятно, что в опухолевых тканях сосредоточено больше свободного железа, чем в нормальных тканях. Следовательно, в присутствии кислорода и витамина С клетки опухоли испытывают сильный окислительный стресс, способный их погубить.

Но если это так, почему результаты Камерона не удается воспроизвести? В статье, опубликованной в 2001 г. в Canadian Меdical Association Jоиrnаl и посвященной пересмотру противоракового действия витамина С, Марк Левайн и Себастьян Падайатти из Национального института здоровья утверждали, что действие витамина зависит от способа его введения. Полинг и Камерон вводили витамин С внутривенно, тогда как в клинике Майо при попытках воспроизвести их результаты пациентам давали витамин в таблетках. При пероральном приеме из-за низкой скорости всасывания и высокой скорости выведения концентрация витамина в крови практически не изменяется. При внутривенном введении фактор всасывания вообще не играет роли, и почки не сразу выводят витамин из крови. Таким образом, на короткое время концентрация витамина С в крови может в 50 раз превышать нормальный уровень, и именно в этом может состоять принципиальная разница. Поэтому Падайатти и Левайн настаивали на проведении новых контролируемых испытаний.

В одном исследовании было показано, что витамин С помогает убить опухолевые клетки за счет усиления действия свободных радикалов. Данный метод был назван фотодинамической терапией (я упоминал о нем в главе 6). Лекарственный препарат активируется под действием света, а затем отдает химическую энергию кислороду, в результате чего образуется синглетный кислород и различные свободные радикалы, атакующие опухоль. Исследователи из Университета Айовы и из Китая показали, что сочетание высоких доз витамина С и фотодинамической терапии повышает эффективность лечения. Если клинический эффект окажется значимым (пока рано об этом говорить[62]), репутация Полинга будет восстановлена.

На примере витамина С я попытался раскрыть суть действия антиоксидантов. Что же мы узнали? Первый вывод заключается в том, что витамин С выполняет одну и ту же молекулярную функцию, определенную его химической структурой. Это не химический супергерой, способный принять любое обличье и спасти нас от дьявола. Функция всех антиоксидантов ограничена их химической структурой, но это не мешает им оказывать разнообразное влияние. Второй вывод состоит в том, что простое повторяющееся действие может иметь множество физиологических проявлений. Мы видели, что витамин С служит кофактором как минимум для восьми ферментов, влияющих на самые разные функции организма — от синтеза коллагена и метаболизма жиров до реакций на стресс (синтез норадреналина) или восприятия боли (активация вещества P). Возможно, среди всех этих проявлений активности витамина С его антиоксидантные свойства изучены хуже всего. То же самое можно сказать и о многих других «антиоксидантах».

Самым ярким подтверждением антиоксидантной функции витамина С является его быстрое поглощение нейтрофилами, которые он защищает от ими же созданной волны антибактериальной атаки. Важно отметить, что нейтрофилы накапливают витамин С только при бактериальной инфекции. Такая быстрая реакция может быть связана с бессмысленностью энергетических затрат на поглощение витамина С, когда в нем нет нужды, или с его потенциальной опасностью. Это подводит нас к третьему важному выводу относительно функции витамина С: конкретное действие антиоксиданта зависит от его окружения. Играет ли витамин C роль антиоксиданта, прооксиданта или какую-то промежуточную роль, зависит от его взаимодействия с другими молекулами. Мы видели, что витамин С напрямую взаимодействует с некоторыми свободными радикалами, но также с железом, медью, витамином Е и глутатионом. Чтобы витамин C выполнял функцию антиоксиданта, каждое из этих веществ должно оказаться в правильное время в правильном месте, для чего нужнa целая сеть вспомогательных молекул. В общем и целом все эти факторы можно считать антиоксидантными. Где провести границу? Чтобы осознать, как сложно дать определение антиоксиданта, давайте завершим эту главу рассказом о поведении активированных нейтрофилов.

Концентрация витамина С в нейтрофилах может в 100 раз превышать его концентрацию в плазме крови, однако нейтрофилы поглощают не сам витамин, а только его окисленную форму — дегидроаскорбат. В мембранах нейтрофилов есть белковый насос, узнающий дегидроаскорбат и проталкивающий его в клетки. Внутри клетки дегидроаскорбат превращается в витамин С и только тогда может использоваться. Это преобразование осуществляет фермент глутаредоксин, который забирает электроны у глутатиона и регенерирует витамин С. Для непрерывной работы системы требуется постоянная регенерация глутатиона. Эту функцию выполняет фермент глутатионредуктаза с помощью электронов, которые в противном случае были бы использованы для превращения кислорода в воду в процессе клеточного дыхания. Ставка в этой игре — выживание. Физиологический баланс в нейтрофилах смещается от нормального дыхания к критическому сценарию, необходимому для регенерации глутатиона и витамина C. Другими словами, активированные нейтрофилы перестают дышать и начинают защищаться в надежде на то, что проживут достаточно долго, чтобы уничтожить бактерии[63].

Стaвки очень высоки, и непонятно, почему все завязано на витамин С? Водорастворимый витамин С накапливается в цитозоле клеток. Граница, которую не могут пересечь бактерии, проходит не внутри клеток, а по клеточной мембране, состоящей из непроницаемых для витамина С липидов. Поглощенные нейтрофилами бактерии изолированы внутри фагоцитарных вакуолей, образованных складками внешней клеточной мембраны. Нейтрофилы выделяют токсины в вакуоли (а также в окружающее пространство) и, чтобы не погибнуть от собственных токсинов, должны поддерживать целостность внешних и внутренних мембран. Если мембраны повреждаются в битве с бактериями и прорываются, нейтрофилы погибают, как люди, с которых сдирают кожу. Витамин С нужен для того, чтобы укрепить и в буквальном смысле оживить линию защиты.

Главный защитник клеточной мембраны — жирорастворимый витамин Е. Он передает электроны непосредственно свободным радикалам, которые могут нарушить целостность мембраны, и тем самым их нейтрализует, а сам угасает, превращаясь в радикал альфа-токоферола. Витамин С вдыхает жизнь в этот почти инертный радикал, воскрешая его в виде витамина Е. В этой реакции ферменты не участвуют, и ее скорость зависит от соотношения количества витаминов С и Е. Чем больше витамина С, тем быстрее происходит регенерация витамина Е и, следовательно, накопление витамина С в нейтрофилах. В то же время высокая концентрация витамина С опасна, особенно в присутствии супероксидного радикала, способного высвобождать железо из белков (см. главу 6). Витамин С может перейти на сторону врага и начать действовать в качестве прооксиданта. Чтобы такого не произошло, необходимо изолировать провокаторов — железо и медь. А для этого нужны молекулярные датчики, которые реагируют на присутствие минимального количества свободного железа или меди в клетке и позволяют изолировать их, связав с белками (соответственно с ферритином и церулоплазмином). Если емкости имеющихся комплексов недостаточно, нужно создавать новые, для чего требуется транскрипция и трансляция многих генов. В целом за 2 часа в активированных нейтрофилах человека экспрессируются около 350 генов, включая гены ферритина и церулоплазмина.

Каждое звено в этой цепи необходимо для нормальной работы всей системы. Тот факт, что нейтрофилы защищают себя, накапливая витамин С, а бактерии этого не делают, объясняется тем, что бактерии либо не могут детектировать дегидроаскорбат, либо не умеют его поглощать. Вся цепь событий в нейтрофилах запускается в присутствии дегидроаскорбата. Чем больше этого вещества, тем быстрее работает насос. Вообще говоря, активация нейтрофилов может происходить даже без участия бактерий, лишь при наличии в среде небольшого количества дегидроаскорбата. Напротив, бактерии не оживляются даже в море дегидроаскорбата. У них есть все, что нужно для синтеза витамина С, витамина Е и глутатиона, а также для связывания железа и меди, но они не чувствуют присутствия дегидроаскорбата. И это может стоить им жизни. В таком случае все затраты нейтрофилов оправданы.

Самым удивительным в этом сценарии является перестройка метаболизма нейтрофилов при появлении дегидроаскорбата, которая вносит вклад в общую антиоксидантную реакцию. Мы не можем определить антиоксидант как молекулу с конкретным типом действия. Обнаружение дегидроаскорбата — антиоксидантная реакция. Связывание железа — антиоксидантная реакция. Регенерация глутатиона — тоже. Даже снижение скорости метаболизма (сдерживание дыхания) — тоже антиоксидантная реакция. Невозможно провести черту между факторами, которые принято называть антиоксидантами (такими, как витамин С), и физиологическими адаптациями, обычно не воспринимаемыми в качестве проявлений антиоксидантных свойств (как замедление клеточного дыхания). Чтобы проанализировать работу этой сложной сети взаимодействий, нам придется отвлечься от витамина С и посмотреть, как организм в целом реагирует на окислительный стресс.


Загрузка...