Немецкий биолог XIX в. Август Вейсман первым обратил внимание на различие между бессмертными зародышевыми клетками и смертными клетками тела. Он также первым задумался о проблеме старения в свете теории Дарвина. Вейсман считал, что в условиях ограничения ресурсов родители не должны конкурировать с потомством. Он утверждал, что старение — это способ очистить популяцию от уже ненужных особей и освободить место потомству, но не слишком быстро, чтобы не потерять социальные связи и опыт. Кроме того, смена особей в популяции имеет генетические преимущества. Дело в том, что генетически застывшая популяция — прекрасная мишень для патогенов и хищников. Ведь гораздо легче ограбить банк, если известны все привычки охраны. При смене поколений старые гены составляют новую комбинацию и поэтому в меньшей степени чувствительны к атакам патогенов. Вейсман и его последователи считали, что старение — это адаптация, позволяющая использовать преимущества жизни в обществе и одновременно освобождать пространство для новых индивидов, тем самым поддерживая генетическую подвижность вида.
Большинство современных эволюционных биологов не признают доводы Вейсмана, поскольку он делал акцент на так называемый групповой отбор, а не на индивидуальный. Если старение запрограммировано таким же образом, как, скажем, эмбриональное развитие, пользу получает общество в целом, а не отдельный человек. При обсуждении полового размножения мы видели, что теория происхождения того или иного признака должна оперировать терминами индивидуального отбора. Но даже если групповой отбор не объясняет происхождение старения, возможно, он поддерживает уже возникший его механизм. Эта идея по-прежнему не покидает ученых и, вообще говоря, является концептуальной основой большинства теорий программируемого старения. Какие же факты подтверждают, что групповой отбор поддерживает программу старения?
Учитывая, что животные и растения имеют определенную продолжительность жизни, долгожительство, очевидно, записано на уровне генов. Но это не означает, что существует какая-то формальная генетическая программа, как не существует программы, определяющей, что автомобиль должен выйти из строя через 20 лет. Детали автомобиля изначально конструируют таким образом, чтобы они могли прослужить определенный срок, и тот факт, что они изнашиваются одновременно, не указывает на наличие какой-то скрытой программы. Рассказывают, что однажды Генри Форд посетил свалку старых автомобилей «Форд-ТS» и поинтересовался, есть ли на этих машинах неизношенные детали. Ему ответили, что у всех машин исправна рулевая колонка. Тогда Форд велел ведущему инженеру переделать рулевые колонки — раз они не ломаются, вероятно, они обходятся фирме слишком дорого.
Естественный отбор действует аналогичным образом. Когда какой-то орган работает достаточно хорошо, так что его недостатки не оказывают негативного влияния на функционирование системы в целом, естественный отбор не имеет возможности исправить эти недостатки. Напротив, когда в некоторых случаях орган работает лучше, чем требуется, накопление случайных мутаций на протяжении нескольких поколений постепенно снизит эффективность его работы до допустимого уровня, на котором его будет поддерживать естественный отбор. По этой причине те животные, недавно (в эволюционном плане) адаптировавшиеся к жизни в постоянной темноте в пещерах или на дне океана, часто имеют рудиментарные глаза, которые уже не выполняют своей функции. Деградация до общего знаменателя вполне может объяснить наблюдаемое синхронное возрастное изнашивание органов и систем. Как заметил Джон Мейнард Смит, «синхронный коллапс не означает, что существует какой-то единый механизм старения».
Наиболее отчетливое впечатление о запрограммированном характере старения создается при изучении животных, развивающихся по сценарию «катастрофического старения». Самый известный пример — тихоокеанский лосось, но есть и другие, такие как бабочки-подёнки, сумчатые мыши Antechinus и осьминог Octopus hummelincki. Тихоокеанский лосось выводится в небольших пресноводных ручьях, откуда мигрирует в океан. Взрослые особи проделывают длиннейший путь, возвращаясь к месту своего рождения, где мечут большое количество икры и спермы. После этого всего за несколько недель они стареют и умирают, а их разлагающиеся тела обогащают местную пищевую цепь — в конечном итоге благоприятствуя развитию их же потомства. Эти процессы направляются гормонами и способствуют развитию популяции (потомства в целом), а не отдельных особей (родителей). Разве это не пример группового отбора, приводящий к программированному старению, о котором говорил Вейсман? Данный процесс получил название феноптоза, или программированного разрушения фенотипа, по аналогии с апоптозом — программированной гибелью клетки.
Необходимо отметить, что даже в примере с лососем есть исключения из правила. Так, атлантический лосось мигрирует на более короткие расстояния и способен размножаться несколько сезонов; он не вписывается в сценарий «катастрофического старения». И мы ошибемся, если станем рассматривать ситуацию с тихоокеанским лососем как модель человеческого старения. Тем не менее мы не сможем полностью отказаться от идеи программированного старения, пока не объясним особенностей тихоокеанского лосося. Впрочем, за ответом далеко ходить не надо. Причина подобного поведения заключается в способе размножения: тихоокеанский лосось, подёнки, сумчатая мышь и О. hummelincki являются семельпарными организмами — они размножаются всего один раз в жизни. Итеропарные организмы, которые размножаются несколько раз, обычно стареют медленнее.
Вспомним о гипотезе одноразовой сомы и о компромиссе между половым размножением и выживанием. Если существо спаривается всего один раз и не выращивает свое потомство, его выживание после размножения никак не влияет на генетическое содержание следующих поколений. Все селективное давление реализуется в сжатые сроки в начале жизненного пути — во время репродуктивного периода. Чтобы понять, почему это важно, представьте себе, что какие-то особи спариваются интенсивнее остальных, возможно, поскольку производят чуть больше тестостерона или эстрогена. Результатом этих усилий является более многочисленное потомство, но цена — выживаемость родителей. Если бы такой родитель занимался воспитанием потомства, естественный отбор замечал бы разницу и противодействовал бы ей, но в случае семельпарного лосося, не имеющего контакта с потомством, слепой часовщик остается безразличным. В популяции начинают преобладать наиболее плодовитые короткоживущие лососи. Почти случайно отбор благоприятствует интенсивному выделению половых гормонов, что обеспечивает максимальную эффективность размножения. Если бы мы измеряли гормональные изменения в организме тихоокеанского лосося, мы, совершенно очевидно, наблюдали бы картину программируемого старения, однако, на самом деле, гормональные изменения почти наверняка вторичны по отношению к необходимости размножения. И не они запускают механизм старения. Таким образом, «катастрофическое старение» тихоокеанского лосося объясняется в рамках идеи одноразовой сомы: все ресурсы организма направляются на размножение при полном безразличии к генам, отвечающим за продолжительность жизни.
Такой же аргумент справедлив и для итеропарных организмов. В данном случае важным параметром является не единственная возможность спаривания, а репродуктивный возраст, ограниченный вероятностью смерти. Вспомните, что долгоживущие животные размножаются медленнее. Если они попадают в зубы хищнику, они оставляют менее многочисленное потомство. Поэтому в популяции тоже преобладают короткоживущие, способные к воспроизведению особи, а долгожители устраняются естественным отбором. Именно это происходит с животными, которые в наибольшей степени страдают от нападений хищников, как опоссумы. Но, когда угроза нападения хищников ослабевает, отбор благоприятствует долгожителям — хотя бы по той причине, что чем меньше детенышей в помете, тем выше их шанс на выживание. В дикой природе организмы с низким уровнем смертности живут дольше, поскольку их не наказывают за медленное размножение. Такая ситуация наблюдается в случае островных опоссумов, а также птиц, летучих мышей, черепах, общественных насекомых и людей. Они живут долго, поскольку защищены от хищников способностью летать, твердым панцирем, социальной организацией или разумом.
Естественный отбор благоприятствует долгожительству еще и при условии, что родители обеспечивают выживание потомства. Если воспитание ребенка повышает его шансы на выживание, происходит отбор генов долгожительства. Это не подарок матери-природы, не проявление духа альтруизма, а действие механизма, противоположного механизму «катастрофического старения». В популяции особей с обычным распределением генов долгожительства родители, живущие дольше, обеспечивают большую поддержку своим детям, и эти дети с большей вероятностью доживут до взрослого возраста. Они, конечно же, унаследуют от родителей часть генов долгожительства, так что их собственные дети тоже получат от этого выгоду. Так происходит отбор долгоживущих особей (при условии, что фактор «случайной» смерти незначителен).
Том Кирквуд и Стивен Аустад утверждали, что климакс — одно из проявлений этого механизма. Для женщин старшего возраста равновесие между размножением и выживанием самопроизвольно смещается в сторону выживания. Пожилые женщины приносят больше пользы в биологическом плане за счет того, что выращивают, а не рожают детей. Беременность в пожилом возрасте сопряжена с высоким уровнем риска, тогда как долгая жизнь помогает вырастить детей или внуков — вот в чем смысл климакса. К мужчинам это не относится, они не рожают детей, не переживают климакс и в среднем умирают раньше. В эволюционном плане продолжительность жизни отцов не связана с количеством детей.
Во всех рассмотренных примерах преимущества длинной или короткой жизни определяются на индивидуальном уровне. Мы замкнули круг. Эта точка зрения полностью противоположна теории Вейсмана, о которой мы говорили в начале главы. Вейсман утверждал, что запрограммированное на индивидуальном уровне старение служит на благо вида в целом. На самом деле, даже «катастрофическое старение» гораздо лучше объясняется в терминах гипотезы одноразовой сомы и эгоистического индивидуального отбора: если жизнь коротка, организмы успевают передать больше собственных генов, если быстро размножаются. Затраты на размножение снижают вероятность выживания, поскольку подпитываются из того же источника. Поэтому продолжительность жизни и скорость размножения приходят к оптимальному равновесию. Если времени достаточно, отбор благоприятствует более долгоживущим организмам, особенно когда родители участвуют в воспитании потомства.
Во всех перечисленных случаях генетическое равновесие переустанавливается самопроизвольно за счет механизма отбора. Нет необходимости программировать старение, и нет никаких доказательств существования такой программы. Но даже безо всякой программы возрастные изменения, безусловно, записаны на генетическом уровне. К счастью, люди не следуют сценарию «катастрофического старения» после рождения детей, скорее, потихоньку «засыпают». Но если старение связано с генами, но не запрограммировано, каков же его механизм?
Забавно, что аргумент Вейсмана отражен в самой теории естественного отбора. Выживание сильнейшего подразумевает гибель слабейшего. При высоком уровне смертности селективное давление быстро ослабевает. Если средняя продолжительность жизни составляет 20 лет и за это время репродуктивный цикл уже совершен, селективное давление, направленное на увеличение продолжительности жизни, скорее всего, невелико. Этот тезис высказали Дж. Б. С. Холдейн и Питер Медавар в 1940-х и 1950-х гг., а позднее его развивал американский эволюционный биолог Джордж К. Уильямс в теории антагонистической плейотропии (греческое слово «плейотропия» означает «множество эффектов»; в данном случае некоторые эффекты противоположные — антагонистические).
Пожалуй, самый яркий пример слабого селективного давления был описан Холдейном в 1942 г. Речь идет о болезни Хантингтона. Признаками этого серьезного генетического нарушения является прогрессирующая хорея (потеря контроля двигательной активности, сопровождающаяся импульсивными движениями) и деменция. Болезнь обычно развивается в среднем возрасте и начинается с легких подергиваний и спотыканий и заканчивается потерей способности ходить, говорить и размышлять. В Средние века людей со странной походкой и «не в своем уме» считали одержимыми злыми духами и нередко сжигали на кострах (помните знаменитый процесс над салемскими ведьмами в 1693 г.?). Несмотря на тяжесть симптомов, болезнь Хантингтона относится к числу наиболее распространенных генетических заболеваний — в среднем один случай на 15 тыс. человек. В некоторых регионах, например в деревнях по берегам озера Маракайбо в Венесуэле, болезнь поражает до 40% населения. Считается, что все эти люди являются потомками Марии Консепсьон, которая жила в начале ХIХ в. и имела 20 детей. Говорят, сейчас у нее уже около 16 тыс. потомков.
Болезнь связана с повреждением одного доминантного гена (гена хантингтина). Ген называют доминантным, если для проявления признака (болезни) достаточно лишь одной такой копии гена. Большинство генетических заболеваний рецессивны, то есть проявляются только тогда, когда у человека есть две копии «плохого» гена. Как мы обсуждали в главе 11, в диплоидных организмах негативный эффект «плохого» гена, доставшегося от одного родителя, часто сглаживается активностью нормального гена от другого родителя. Количество таких рецессивных признаков в популяции поддерживается на определенном уровне ввиду некоторых преимуществ, которые предоставляют «плохие» гены. Например, аномальный ген гемоглобина, являющийся причиной серповидно-клеточной анемии, в какой-то степени предохраняет от малярии и достаточно часто встречается в популяциях людей, живущих в малярийных районах, таких как Западная Африка. Ежегодно от серповидно-клеточной анемии умирают сотни тысяч детей, но носители единственной копии «плохого» гена редко страдают от серьезных проявлений анемии и защищены от малярии и ее последствий. Таким образом, распространенность гена серповидно-клеточной анемии определяется равновесием между преимуществами и недостатками. Кстати, Дж. Б. С. Холдейн первым предположил наличие связи между серповидно-клеточной анемией и малярией.
Однако при болезни Хантингтона ситуация совсем иная: болен даже обладатель единственного поврежденного гена. Отличие от серповидно-клеточной анемии еще и в том, как указывал Холдейн, что болезнь развивается у людей в возрасте 35 — 40 лет. На протяжении большей части человеческой истории люди просто не доживали до такого возраста. Поэтому естественный отбор не устранил данную мутацию из человеческой популяции. Но что было бы, если бы какой-то вариант данного гена вызывал болезнь у десятилетних детей? Естественный отбор немедленно удалил бы эту мутацию, поскольку ее носители не могли бы воспроизводиться.
В этой связи о старении можно говорить как о результате позднего проявления патологических мутаций, накопленных на протяжении многих поколений, а не за время жизни одного человека. Каждый человек наследует этот генетический багаж от предыдущих поколений. Таким образом, старение — это заполнение «мусорной корзины для плохих генов». Теория антагонистической плейотропии развивает эту идею. Недостаток идеи «мусорной корзины» заключается в том, что не существует селективного давления, приводящего к накоплению негативных поздно проявляющихся мутаций — нет никакой движущей силы, способствующей дегенерации, кроме обычной тенденции к износу. Джордж К. Уильямс нашел одну причину, которая могла бы объяснить отбор генов с патологическими мутациями. Возможно, это плейотропные гены — их эффект неоднозначен. Мы ведь видели, что витамин С участвует во множестве клеточных процессов, так и эти гены могут в каких-то условиях оказывать положительное действие, а в каких-то — противоположное, отрицательное. Например, полезные антиоксидантные свойства витамина С в определенных условиях сочетаются с пагубными прооксидантными свойствами. Теория антагонистической плейотропии утверждает, что гены могут вызывать как «положительный», так и «отрицательный» эффект, а результатом является оптимальный компромисс между добром и злом.
Таким образом, в рамках этой теории считается, что «плохие» гены не просто сбрасываются в «мусорную корзину», а скорее что они оказывают полезное действие в молодости и вредное действие в более зрелые годы. Если преимущества перевешивают недостатки, такие гены отбираются в ходе эволюции. Как заметил Медовар, «даже сравнительно небольшие преимущества на ранних этапах жизни индивида могут перевешивать катастрофические недостатки на более поздних этапах». Вернемся к болезни Хантингтона. Некоторые исследования показывают, что мутации гена хантингтина в молодости действительно дают определенные преимущества, хотя механизм этого процесса неизвестен. Люди с мутантным геном, у которых заболевание развивается в зрелые годы, проявляют бóльшую заинтересованность в сексе, чем большинство других людей. Исследования, проведенные в Уэльсе, Канаде и Австралии, показывают, что люди с мутацией гена хантингтина отличаются повышенной фертильностью по сравнению с их здоровыми родственниками или с общей популяцией. Эффект очень слабый — на уровне 1%, и это подтверждает идею о том, что, когда дело касается плодовитости, даже очень слабые преимущества в молодости для естественного отбора перевешивают серьезные недостатки в более зрелые годы.
На протяжении многих лет гипотеза антагонистической плейотропии определяла развитие теории старения, и до сих пор она является одной из ведущих гипотез. В ней, безусловно, есть доля истины. Она не противоречит идее об одноразовой соме — обе идеи основаны на представлении о компромиссе, при котором генетические ресурсы организма направляются на воспроизводство в молодом возрасте в ущерб здоровью в более поздние годы. Однако сходство между этими гипотезами приводит к тому, что одну из них часто воспринимают как особый случай другой, что совершенно неверно.
Гипотеза одноразовой сомы предполагает наличие компромисса между успешностью воспроизведения и поддержанием сохранности организма. Чтобы дольше жить, нужно больше ресурсов направлять на поддержание сохранности организма и меньше — на размножение. Это, по сути, жизненный выбор, перераспределение ресурсов организма, на которое теоретически может влиять сам человек. Напротив, гипотеза антагонистической плейотропии основана на компромиссе между действием генов в молодом и более позднем возрасте, связанном с большей активностью в молодости и постепенным угасанием в старости.
Возможно, в этом компромиссе задействованы сотни или даже тысячи генов. Вот в чем заключается принципиальное различие между двумя гипотезами. Если старение — результат накопления сотен или тысяч отсроченных негативных воздействий, мы вряд ли можем повлиять на этот процесс. Изменение максимальной продолжительности жизни в таком случае потребовало бы изменения всего генотипа с неизвестными последствиями для нашего здоровья в молодости. По этой причине гипотеза антагонистической плейотропии негативным образом сказалась на развитии исследований. В частности, из нее следует, что все плохое, что может случиться, обязательно случится. «Плохие» гены вызывают болезнь, так что в старости мы обязательно заболеем.
Так ли это на самом деле? Действительно ли невозможно умереть в старости здоровым? Большинство людей считают, что это возможно, хотя бывает редко. Самые старые долгожители, перешагнувшие столетний рубеж, часто умирают от мышечной слабости, а не от какого-то конкретного заболевания. Это означает, что есть разница между старением и старческими заболеваниями, вызванными «поздно действующими генами». Может быть, гипотеза одноразовой сомы описывает процесс старения в целом, а гипотеза антагонистической плейотропии на генетическом уровне объясняет нашу подверженность старческим заболеваниям? Может быть. Мы поговорим об этом в главе 14.
Возможно, старение все же управляемо в большей степени, чем следует из гипотезы антагонистической плейотропии, что подтверждается изменчивостью продолжительности жизни организмов в дикой природе. Если для изменения продолжительности жизни требуется координированная мутация сотен или тысяч генов с отсроченным характером действия, любые изменения должны происходить за очень протяженные промежутки времени. Но мы видели, что продолжительность жизни опоссумов удвоилась менее чем за 5000 лет — один миг по эволюционной шкале времени. Люди стали жить вдвое дольше других высших приматов за несколько миллионов лет, да и сами приматы достаточно быстро стали жить долго по стандартам других млекопитающих. В лаборатории можно добиться удвоения времени жизни дрозофил всего за 10 поколений. Быстрота этих изменений показывает, что продолжительность жизни можно модулировать путем воздействия всего на несколько генов.
Эта идея подкрепляется экспериментальными данными. Уже известно некоторое количество так называемых геронтогенов, под влиянием которых продолжительность жизни простых животных, таких как нематоды, может удвоиться или даже утроиться. На первый взгляд может показаться, что эти гены оказывают совершенно разное действие, но при ближайшем рассмотрении выясняется, что все они связаны между собой общим фактором — кислородом.
Впервые о мутациях, вызывающих увеличение продолжительности жизни, в 1988 г. сообщили Дэвид Фридман и Том Джонсон, тогда работавшие в Университете Калифорнии в Ирвине. Мутантный ген age-1 увеличивал максимальную продолжительность жизни крошечной нематоды Саеnоrhabditis elegans длиной всего 1 мм от 22 до 46 суток. Мутантные нематоды были нормальными во всех отношениях, за исключением того, что их плодовитость снижалась на 75%. В 1993 г. Синтия Кеньон и ее группа в Университете Калифорнии в Сан-Франциско обнаружили, что мутация родственного гена daf-2 почти втрое увеличивала продолжительность жизни С. elegans — до 60 суток, что эквивалентно человеческой жизни длиной в 300 лет. Выяснилось, что оба гена могли останавливать развитие С. elegans, превращая нематоду в долгоживущую и нечувствительную к стрессу форму, называемую спящей личинкой.
Теперь известно более 30 генов, участвующих в образовании спящей личинки[67]. Эта форма обычно появляется в экстремальных условиях, особенно при недостатке пищи и перенаселенности. Личинка переживает трудные времена в состоянии сна. Она запасает питательные вещества и не должна есть, а также окружает себя толстой пленкой, защищающей от внешних воздействий. Когда условия улучшаются, личинка «просыпается» и возвращается к той фазе жизни, в которой остановилось ее развитие. Время, проведенное в спящем состоянии, никак не влияет на продолжительность жизни взрослой формы. Если до погружения в сон нематоде оставалось прожить 10 дней, после пробуждения она проживет 10 дней. Можно сказать, что спящие личинки не стареют, хотя в реальности после 70 суток сна они редко оживают. У личинок есть два свойства, которые могли бы объяснить их долгожительство: пониженный метаболизм и повышенная устойчивость к стрессу. В частности, спящие личинки нечувствительны к окислительному стрессу, вызванному пероксидом водорода или высокой концентрацией кислорода.
Мутации генов, контролирующих образование спящих личинок, иногда нарушают формирование личинок даже в нормальных условиях. В других случаях нематоды оказываются неспособны перейти в спящее состояние в экстремальных условиях. Но самое удивительное и важное наблюдение заключается в том, что эффект долгожительства можно отделить от образования спящей формы. В определенных условиях мутации генов age-1 и daf-2 могут удвоить продолжительность жизни нормальной взрослой формы без погружения в фазу сна. Забавно, что одним из необходимых условий является нормальное функционирование третьего гена, называемого daf-16. Если daf-16 мутирован и не может нормально работать, мутации аgе-1 и daf-2 не приводят к увеличению продолжительности жизни. Дело в том, что age-1 и daf-2 снижают продолжительность жизни, ингибируя действие гена daf-16.
Каким бы ни был механизм этого процесса, ясно одно: все эти гены взаимодействуют между собой регулируемым образом в зависимости от ситуации. Как заметила Синтия Кеньон в статье в журнале Nature,
«Долгожительство спящей личинки объясняется регуляцией механизма увеличения продолжительности жизни, который можно отделить от других аспектов образования спящей формы; понять механизм удлинения жизни можно путем изучения генов daf-2 и daf-16».
Что же делают эти гены? Ответ на этот вопрос позволяет объяснить многие наблюдения, обсуждавшиеся в этой и предыдущей главе. В конце 1990-х гг. Хейди Тиссенбаум, Гэри Равкан и их группа в Гарварде последовательно осуществили клонирование генов аge-1, daf-2 и daf-16. Эти гены кодируют белки, контролирующие клеточный ответ на действие гормонов. Каждый ген отвечает за одно звено в сигнальной цепи, а цепь эта следующая. Гормон связывается с мембранным рецептором, кодируемым геном daf-2. Рецептор активирует связанный с ним фермент, кодируемый аge-1. Активированный рецептором фермент усиливает сигнал, катализируя производство большого количества вторичных посредников (мессенджеров) — как будто распространяет информацию. Вторичные мессенджеры поступают в ядро, где эта информация либо активирует, либо дезактивирует транскрипционные факторы (белки, которые связываются с ДНК и контролируют активность генов). Один из важнейших транскрипционных факторов кодируется геном daf-16. Связываясь с ДНК, этот транскрипционный фактор координирует клеточный ответ на гормональный сигнал, выбирая определенный набор генов для транскрипции.
Так осуществляется передача сигнала в клетке. Подробности данного процесса изучают (часто с неудовольствием) все будущие биохимики и клеточные биологи. Это стандартная коммуникационная система клетки, позволяющая усилить исходный сигнал и устранить «шум». Описание процесса напоминает описание работы телеграфа. В обоих случаях наибольший интерес представляет не путь передачи информации, а ее содержание.
Ответ можно получить путем подробного анализа самих генов. Последовательности этих генов примитивной нематоды имеют сходство с последовательностями аналогичных генов других организмов. Как мы обсуждали в главе 8, сходство последовательностей обычно говорит не только о единстве происхождения, но и о единстве функций. В данном случае сходство последовательностей генов аge и daf выдаeт глубокое эволюционное родство, связывающее нематоду с дрозофилой, мышью и человеком. Гены аge и daf этих организмов удивительным образом похожи на гены нематоды. В каждом случае они кодируют элементы сигнального пути, а сигнал подают гормоны небольшого семейства — семейства инсулина.
Инсулин входит в группу родственных гормонов, оказывающих серьезное влияние на метаболизм клетки. Функция гормонов в организмах разных видов различается, но в целом инсулин и родственные гормоны контролируют питание, размножение и продолжительность жизни. Инсулин стимулирует рост организма: в присутствии инсулина клетки тела быстро захватывают глюкозу и запасают в форме углевода гликогена. Усиливается синтез белков и жиров, что способствует увеличению массы тела. Останавливается расщепление гликогена и белков для получения энергии. По мере потребления глюкозы ее содержание в крови снижается. Противоположное действие оказывает глюкагон, который восстанавливает нормальный уровень глюкозы в крови. Можно сказать, что в плане развития инсулин символизирует изобилие. Присутствие глюкозы свидетельствует об обилии пищи: сейчас хороший момент для роста — завершай развитие, размножайся! Пользуйся случаем!
Если этот сигнал настойчиво повторяется, например при обилии глюкозы в пище, боевой клич подхватывают и другие гормоны семейства, действующие более длительное время. Высокий уровень глюкозы в крови стимулирует выработку гормона роста, который, в свою очередь, способствует синтезу инсулиноподобных факторов рocтa (IGF). Эти молекулы по структуре и функции напоминают инсулин, но оказывают еще более сильное действие. Они стимулируют синтез новых белков, активизируют рост, деление и дифференциацию клеток. Важно, что IGF также модулируют действие половых гормонов, влияющих на половое созревание, менструальный цикл, овуляцию, имплантацию яйцеклетки и развитие зародыша. Мутация гена IGF-1 приводит к задержке развития первичных половых признаков.
Именно в этом может заключаться связь между плодовитостью и продолжительностью жизни, лежащая в основе гипотезы одноразовой сомы. При обилии еды происходит образование инсулина и IGF. Организм готовится к половому созреванию и размножению, не заботясь о продолжительности жизни. Вот он, момент выбора, контролируемый генетическим переключателем: размножение или долгая жизнь. Вполне вероятно, что у нематод этим переключателем является транскрипционный фактор, кодируемый геном daf-16.
В таком случае «механизм долгожительства» работает примерно следующим образом. При постоянно низком уровне глюкозы в крови уровень инсулина и IGF остается низким. Рецепторы в клеточной мембране, которые должны передавать сигнал, не работают. Распространяющие информацию вторичные мессенджеры молчат. В норме эти мессенджеры должны блокировать действие белка daf-16, но, когда их нет, daf-16 переключается и координирует транскрипцию ряда специфических генов, продукты которых обеспечивают нематоде долгую жизнь, позволяя дождаться лучших времен. Кроме того, белок daf-16 активирован при мутации гена daf-2, кодирующего мембранный рецептор инсулина. В этом случае сигнал инсулина не попадает в клетку, daf-16 переключается «на долгую жизнь», и организм ведет себя так, как будто инсулина нет: он становится нечувствительным к действию инсулина.
Таким образом, мутация daf-2 делает червей нечувствительными к инсулину. Интересно, что такой же эффект наблюдается при сенсорной недостаточности[68]. Если нематода считает, что еды нет, она производит меньше инсулина и живет дольше, даже если вокруг изобилие еды и она питается! Таким образом, у червей долгожительство можно отделить от метаболизма с помощью силы мысли (или по крайней мере путем обмана).
Такое же влияние инсулин и IGF оказывают на продолжительность жизни дрозофил и мышей, так что старение червей, насекомых и млекопитающих, по-видимому, контролируется сходными сигналами. В 2001 г. Дэвид Кленси, Дэвид Джемс, Линда Партридж и их коллеги из Университетского колледжа Лондона в статье в журнале Nature описали мутантный штамм дрозофилы с такими же дефектами инсулинового сигнального пути, как у нематод с мутантным геном daf-2. Максимальная продолжительность жизни таких дрозофил на 50% больше, а устойчивость к стрессу выше, чем у нормальных насекомых. Интересно, что долгоживущие дрозофилы были карликами. Ученые провели параллель с карликовыми мышами, которые тоже дольше живут, нечувствительны к стрессу и практически наверняка лишены фактора IGF-1. По некоторым данным, у человека рост тоже связан с продолжительностью жизни: популяционные исследования показывают, что невысокие жилистые мужчины (человеческий эквивалент карликовой мыши) в среднем живут на 5 — 10 лет дольше, чем высокие и крупные. Комплекс Наполеона, по-видимому, включает в себя не только агрессивность, но также выносливость и увеличение продолжительности жизни. Так что не стоит расстраиваться по этому поводу.
Нечувствительность к инсулину обеспечивает долгожительство! Это немыслимое заключение подчеркивает сложность и неоднозначность науки. У человека нечувствительность к инсулину и IGF совсем не является положительным фактором. Такая ситуация приводит к развитию диабета II типа и метаболическим нарушениям. В странах Запада эта форма диабета становится эпидемией и, возможно, является важнейшей медицинской проблемой западного образа жизни. Люди с диабетом II типа не живут дольше, а напротив, подвержены более высокому риску инфаркта, инсульта, слепоты, почечной недостаточности, гангрены и ампутации конечностей. Средняя продолжительность жизни больных как минимум на 10 лет меньше, чем у населения в целом.
Такое расхождение показаний привело к тому, что многие исследователи считают неправомерным использовать нематод в качестве модели для изучения старения людей. Я полагаю, что они ошибаются. Безусловно, необходимо задумываться о применимости данных, полученных на животных моделях, для анализа состояния человека. Конечно, человек намного сложнее крохотной нематоды. Однако существуют веские основания утверждать, что в обоих случаях происходят сходные процессы, только приводят они к совершенно разным результатам.
Чтобы нащупать параллели между человеком и нематодой, нужно отвлечься от деталей и посмотреть на ситуацию в более общем плане. Нечувствительность к инсулину у человека, безусловно, влияет как на продолжительность жизни, так и на плодовитость. Подверженность диабету II типа имеет генетические основания. Распространенность этого состояния в человеческой популяции указывает на то, что соответствующие гены подвергались положительному отбору в нашем недавнем эволюционном прошлом. Эта идея подтверждается удивительно высоким показателем заболеваемости в определенных группах населения, например среди жителей острова Науру в Микронезии в Тихом океане или среди американских аборигенов из племени пима. Науру — удаленный от континентов атолл в Тихом океане с населением около 5000 человек — известен залежами фосфатов, которые привлекли внимание американских компаний в 1940-х гг. По мере роста благосостояния жители острова стали перенимать западный образ жизни: они импортируют практически все пищевые продукты и перешли на западный, энергетически богатый рацион питания. В 1950-х гг. ожирение и диабет II типа приняли характер эпидемии, хотя до этого фактически здесь не встречались. В конце 1980-х гг. диабетом болели более 50% взрослого населения острова. И дело заключается не только в переедании: распространенность диабета значительно выше среди микронезийцев, полинезийцев, коренных американцев и австралийцев, чем среди европейцев, даже при одинаковом питании и одинаковом образе жизни. У индейцев «бережливый генотип». Они генетически устроены так, что в сытые времена накапливают энергию, которая помогает им переживать длительные периоды голода или трудностей (отчасти это верно для всех нас, но значительно менее заметно в сельскохозяйственных сообществах, у которых на протяжении последних тысячелетий почти всегда была еда). «Бережливый генотип» полинезийцев и микронезийцев помогал им переживать длительные морские путешествия, но во времена изобилия такое генетическое строение работает против человека.
Одно из важнейших проявлений «бережливого генотипа» — нечувствительность к инсулину. В норме инсулин стимулирует захват клетками глюкозы из крови и ее превращение в гликоген, белки и жиры и тем самым способствует размножению. Однако в голодные времена организм старается поддержать уровень глюкозы на нормальном уровне, чтобы не отключился мозг, энергетический метаболизм которого полностью зависит от глюкозы. Если состояние голода является нормой и лишь изредка прерывается периодами изобилия, нечувствительность к инсулину помогает поддерживать количество глюкозы в крови на нормальном уровне, поскольку предотвращает ее захват органами, которые могут использовать другие источники энергии. Снижение внутриклеточного содержания глюкозы замедляет скорость метаболизма, предотвращая излишний расход энергии. Устойчивость к инсулину не является полной. Какие-то функции инсулина остаются незатронутыми или даже усиливаются. В частности, продолжается запасание жиров. Это не патологический процесс, а четко отработанный ответ на вероятное развитие событий. Все эти изменения подготавливают организм к тяжелым временам и аналогичны тому, что происходит с нематодой перед вхождением в фазу спящей личинки.
Нечувствительность к инсулину у людей почти наверняка имеет и другие последствия, как и у нематоды, а именно, повышение сопротивляемости стрессу и долгожительство. В тех странах, где многие люди недоедают, дети часто рождаются с недостатком веса. Как и у других животных, малыши погибают чаще, чем крупные и сильные дети. Но среди детей с недостатком веса с наибольшей вероятностью выживают нечувствительные к инсулину. Как и у нематод, нечувствительность к инсулину сопряжена с нечувствительностью к стрессу в целом. Таким образом, такие дети с большей вероятностью доживают до взрослого возраста и передают свои гены потомству. Недостатком это становится только тогда, когда люди с «бережливым генотипом» переходят на богатую углеводами диету.
Нечувствительность к инсулину убеждает организм в том, что пища драгоценна, что мы голодаем, даже когда это не так (аналогия с сенсорной депривацией у нематод). И переключатель срабатывает так же — от размножения к долгожительству. Если человек с «бережливым генотипом» питается углеводами, уровень глюкозы в крови может контролироваться только путем дополнительного повышения уровня инсулина. В результате через несколько лет отказывает поджелудочная железа. Образуется меньше инсулина. А снижение секреции инсулина в сочетании с нечувствительностью к инсулину приводят к тому, что уровень глюкозы в крови уже не контролируется. Так развивается диабет II типа. Все ужасные осложнения заболевания вторичны по отношению к потере контроля над уровнем глюкозы и липидов.
У европейцев диабет II типа распространен в меньшей степени, чем у людей, чьи непосредственные предки были охотниками и собирателями. По-видимому, предки европейцев каким-то образом избежали самого строгого отбора «бережливого генотипа». Причины не до конца ясны, но могут быть связаны с развитием сельского хозяйства и особенно с производством молока. В молоке много лактозы — ценного источника глюкозы. Под действием фермента лактазы лактоза распадается с высвобождением глюкозы. Все младенцы, которых кормят грудным молоком, имеют лактазу, но часто во взрослом возрасте фермент перестает вырабатываться. Потеря фермента является причиной непереносимости лактозы; из-за этого многие люди не могут переваривать сыр и другие молочные продукты. Большинство европейцев и азиатов адаптировались к употреблению молока, поскольку издавна использовали молоко одомашненных коров, но другие народы, в том числе американские аборигены и жители тихоокеанских островов, никогда не приручали молочный скот и в большинстве своем не переваривают лактозу. Таким образом, они лишены самого важного сельскохозяйственного источника сахара. Мы не знаем, свидетельствует ли способность переваривать лактозу об отсутствии «бережливого генотипа» у европейцев, но нам известно, что все группы населения, переваривающие лактозу, меньше подвержены диабету. Напротив, все группы населения с непереносимостью лактозы в значительной степени страдают от диабета.
Дело тут не в самой лактозе. Когда высокий уровень сахара в крови становится нормой, естественный отбор наказывает носителей «бережливого генотипа». Именно это и произошло с жителями Науру. Рацион питания и образ жизни этих людей не изменились с 1980-х гг., когда распространенность диабета достигла максимума, но теперь эти показатели начинают снижаться. Причина заключается в том, что генетическая нечувствительность к инсулину («бережливый генотип») сейчас наблюдается лишь у 9% молодых людей, что на две трети меньше, чем в конце 1980-х гг. Сокращение числа случаев диабета отражает работу естественного отбора: среди людей с диабетом показатели смертности превышали показатели рождаемости.
Таким образом, результатом нечувствительности к инсулину в современных условиях, когда мы не голодаем, является не долгожительство, а диабет. Однако механизм, противопоставляющий воспроизведение и продолжительность жизни, сохранился и у нематод, и у людей. Инсулин давит на генетический переключатель, который готовит организм к воспроизведению. Это позволяет объяснить частое возникновение проблемы бесплодия у диабетиков: диабет — слабая попытка организма выжить путем подавления размножения. Нечувствительность к инсулину заставляет организм запасать пищу и приготовиться к выживанию в тяжелые времена. Адаптация к тяжелым временам включает в себя устойчивость к стрессу и подавление метаболизма на уровне отдельных клеток, другими словами, перераспределение энергии, сопровождающееся сном и увеличением массы тела, как у нематод. Однако, в отличие от нематод, переходящих в состояние спящей личинки, люди просто продолжают есть. Тем не менее изучение диабета у человека и генетический анализ нематод указывают на центральную роль метаболических изменений и стрессовых реакций в процессах старения. Вот так мы с вами подошли к теме многолетних эмпирических исследований связи между кислородом и скоростью жизни. В следующей главе мы поговорим о том, почему быстрый метаболизм в сочетании с низкой устойчивостью к стрессу укорачивают жизнь, а медленный метаболизм и высокая устойчивость к стрессу оказывают обратное действие. Мы также рассмотрим возможности сочетания быстрого метаболизма и высокой устойчивости к стрессу.