В 1891 г.робкая двадцатичетырехлетняя польская девушка по имени Мария Саломея Склодовская прибыла в Париж, чтобы воплотить в жизнь свою мечту — стать ученым. В шовинистически настроенных научных кругах Франции того времени эта мечта вряд ли могла осуществиться, но Мария обладала блестящим умом, невероятной настойчивостью и не боялась трудностей. Мать девушки умерла, когда той было всего четыре года. Младшая из пяти детей в семье, она воспитывалась в бедности отцом-идеалистом. Польша в те годы являлась частью Российской империи. Мария училась в так называемом Летучем университете, который переезжал каждую неделю, поскольку был подпольной организацией. Поляки сопротивлялись политизации образования, и польская культура развивалась в подполье. Не удивительно, что страсть к учению оставила глубокий след в характере Марии.
Когда Марии исполнилось 18 лет, они с сестрой Брониславой договорились работать по очереди, чтобы помочь друг другу оплатить обучение. Сначала Бронислава отправилась в Париж, чтобы получить медицинское образование, а Мария на протяжении шести лет работала гувернанткой. При этом она продолжала подпольное обучение химии и математике и пережила несчастную любовь. Бронислава закончила учиться и вышла замуж за своего однокурсника. Теперь уже Мария приехала в Париж вполне подготовленной студенткой и поступила в Сорбонну. В 1893 г. она блестяще защитилась и получила степень магистра по физике, а в 1894 г. — по математике. Она искала место для самостоятельных исследований, и ее познакомили с не менее одаренным и свободомыслящим французским ученым, который уже составил себе репутацию благодаря трудам по кристаллографии и магнетизму. Они полюбили друг друга, и он писал ей о том, как хорошо было бы «прожить жизнь бок о бок, реализуя наши мечты: твои патриотические мечты, наши гуманистические мечты и наши научные мечты». Мария и Пьер поженились в 1895 г. и провели медовый месяц в поездке по Франции. Когда к Марии пришла научная известность, она носила имя Мария Кюри.
Затем Пьер получил место преподавателя, а Мария продолжала учиться, чтобы получить право преподавать. В 1897 г. родилась их первая дочь Ирен, и в этом же году Мария начала работу над диссертацией — еще один невероятный шаг для женщины того времени. Она стала первой женщиной в Европе, получившей степень доктора наук.
До этого времени Пьер и Мария в основном интересовались магнетизмом (температура, при которой материалы теряют свои магнитные свойства, была названа «точкой Кюри» в честь Пьера Кюри), но позднее они подружились с еще одним молодым и талантливым французским ученым — Анри Беккерелем. Беккерель унаследовал от отца-физика большую коллекцию фосфоресцирующих минералов. Однажды он обнаружил, что, если кристаллы сульфата урана осветить солнечным светом, а затем поместить на фотопластинку и завернуть в бумагу, при проявлении пластинки можно получить изображение кристалла. Сначала он подумал, что испускаемые кристаллом лучи являются результатом флуоресценции, возникающей под действием солнечного света, но не смог ничего проверить из-за пасмурной февральской погоды. В ожидании солнечных дней он сложил оборудование в ящик стола, однако через некоторое время решил все же проявить снимки, ожидая увидеть размытые изображения. К его удивлению, изображения оказались яркими и четкими, и Беккерель понял, что кристаллы испускали лучи даже без воздействия внешнего источника энергии, такого как солнечный свет. Вскоре он показал, что источником излучения был содержащийся в кристаллах уран и что все соединения урана испускают лучи. Кроме того, он обнаружил, что уран повышает электропроводность окружающего воздуха. Он сообщил о своих удивительных открытиях Кюри, и Мария решила заняться изучением этого странного явления, которое позже в диссертации назвала радиоактивностью.
Мария начала работать с урановой рудой, известной как уранинит (настуран). Они с Пьером поняли, что радиоактивность можно измерить по силе электрического поля, которое это вещество создает в окружающем пространстве, и Пьер сконструировал прибор для определения электрического заряда вокруг минеральных образцoв. С помощью этого инструмента Мария обнаружила, что радиоактивность уранинита была в три раза выше радиоактивности самого урана, и сделала вывод, что в этой руде должна содержаться примесь какого-то неизвестного вещества с гораздо более высокой радиоактивностью. Путем химического разделения компонентов уранинита и определения их радиоактивности она обнаружила новый элемент, радиоактивность которого в 400 раз превышала радиоактивность урана. Она назвала его полонием в честь своей родины. Позднее Мария обнаружила совсем небольшое количество еще одного радиоактивного элемента, который был в миллион раз активнее урана, и назвала его радием. Пьер исследовал влияние образца радия на свою кожу и выяснил, что радий вызывает ожоги и раны. Кюри предположили, что этот элемент может применяться в противораковой терапии. Впервые с этой целью радий использовался уже в 1903 г. С. В. Гольдбергом в Санкт-Петербурге. Радиевые иглы до сих пор применяют для облучения опухолей.
Для детального изучения свойств нового элемента супругам Кюри нужно было получить его в большом количестве. Они переработали тонны уранинита, выделив из него лишь несколько сотен граммов чистого элемента. Работали они в ужасных условиях. Один из современников писал, что их лаборатория была больше похожа на хлев или картофельный склад. Из гуманитарных соображений они отказались патентовать радий и, несмотря на финансовые трудности и тяжелые условия работы, получали удовольствие от исследований, особенно ночью, когда видели вокруг себя «светящиеся очертания стаканов и пробирок с образцами».
За открытие естественной радиоактивности супруги Кюри и Беккерель в 1903 г. были удостоены Нобелевской премии по физике. Через год в семье Кюри родилась дочь Ева. Наверное, это было самое счастливое время в их жизни. Но в 1906 г. ослабленный радиацией Пьер трагически погиб: он поскользнулся на мостовой, и голова его попала под колесо конного экипажа. Потрясенная Мария много лет пиcала ему письма в своем дневнике, но ее научный пыл не ослаб, и она в одиночку продолжала работу, которую они начали вместе. Она боролась с французской бюрократической машиной и наконец в 1908 г. смогла занять место покойного мужа: она стала первой женщиной-профессором за 650 лет существования Сорбонны. В 1911 г. Мария Кюри была удостоена второй Нобелевской премии — за выделение чистого радия, а в 1914 г. организовала Институт радия, который теперь называется Институтом Кюри. Цель создания института она видела в ослаблении человеческих страданий. Во время Первой мировой войны она обучала медсестер находить в ранах пули и шрапнель с помощью переносных рентгеновских аппаратов, а после войны вместе с дочерью Ирен начала разрабатывать способы использования радия в противоопухолевой терапии. В 1935 г. Ирен и ее муж Фредерик Жолио получили Нобелевскую премию за открытие искусственной радиоактивности.
Мария не узнала, что ее дочь тоже стала лауреатом Нобелевской премии. Она умерла от лейкоза 4 июля 1934 г. в возрасте 67 лет, измученная и почти ослепшая от катаракты, с пальцами, обожженными ее любимым радием. Она не была ни первым, ни последним человеком, погибшим от лучевой болезни. В 1920-х гг. несколько сотрудников Института радия умерли от рака, вызванного радиоактивным излучением. Мария не могла в это поверить и считала, что все дело в недостатке свежего воздуха. Ее дочь Ирен тоже умерла от лейкоза.
Современные люди, знакомые с историей Хиросимы и Чернобыля, воспринимают радиоактивное излучение не в таком радужном свете. Высокие дозы радиации убивают не только раковые клетки, но и нормальные клетки и ткани. После открытия рентгеновских лучей стали появляться сообщения о многочисленных заболеваниях среди исследователей, которые часами возились с испускающими рентгеновские лучи газоразрядными трубками. У многих выпадали волосы, повреждалась кожа, возникали глубокие ожоги. Низкие дозы изучения повышали риск развития рака. Это стало ясно еще при жизни Марии Kюри. Сорок процентов исследователей, участвовавших в ранних экспериментах по изучению радиоактивности, умерли от рака. Такая же судьба постигла многих людей, имевших контакт с радиоактивными материалами. В 1929 г. немецкие и чешские врачи сообщали, что 50% шахтеров, работавших на урановых рудниках в Богемии и на севере Чехословакии, заболевали раком легкого, что было связано с вдыханием радона — радиоактивного продукта распада урана. В США риск развития рака легкого у шахтеров, работавших на урановых рудниках, тоже был значительно выше, чем у населения в целом.
Ужасная участь ожидала молодых женщин, занимавшихся нанесением радиевой краски на циферблаты часов, чтобы их было видно в темноте. Изначально светящиеся часы предназначались для солдат, воевавших в окопах на фронтах Первой мировой войны, но в 1920-х гг. такие часы вошли в моду. Чтобы заострить концы кисточек, работницы увлажняли их губами. В то время радий все еще считался панацеей от всех бед и рекламировался, например, как оздоровительное средство или средство для повышения сексуального влечения. Работницам говорили, что радий придаст яркость их румянцу, а их губы будут светиться в темноте. Иногда им даже позволялось красить радиевой краской ногти, губы и зубы. Через год зубы начинали выпадать, а челюсти рассыпаться. Многие женщины заболели и умерли, и в их телах, даже в костях, врачи обнаруживали большое количество радона и других радиоактивных веществ. Конечно, компании по производству часов отрицали свою причастность к гибели девушек, и правительство пришло к заключению, что существующие доказательства их вины не являются достаточно убедительными. В передовой статье в газете New York World судебный процесс 1926 г. был назван «одной из самых отвратительныx когда-либо виденных пародий на правосудие».
В конечном итоге компании по производству часов согласились выплатить пострадавшим символическую компенсацию, но так никогда и не признали свою вину. Одна из работниц, Кэтрин Вольф Донахью, в 1938 г. подала в суд на компанию Radium Dial. В чикагском суде она заявила, что вместе с еще одной работницей однажды спросила своего начальника Руфуса Рида, почему компания никогда не предавала гласности результаты медицинских осмотров, проводившихся в 1920-х гг. Рид ответил примерно следующее: «Милые мои, если бы мы обнародовали эти результаты, начался бы бунт». В конце концов в 1941 г. медицинское сообщество установило предельно допустимую дозу облучения радоном, но по экономическим причинам отсроченное воздействие облучения еще долго не предавалось гласности, и совсем немногие люди, даже среди тех, кто работал над созданием атомной бомбы в рамках Манхэттенского проекта, могли предвидеть ужасные последствия выпадения радиоактивных осадков.
Радиоактивные осадки — это осаждающиеся из атмосферы радиоактивные частицы, оставшиеся после ядерного взрыва, которые могут представлять опасность на протяжении длительного времени. При взрыве возникают огненные бури и смерчи, распространяющиеся в высокие слои атмосферы, что часто вызывает дождь. После взрывов в Хиросиме и Нагасаки в воздухе собралось столько радиоактивной золы, что дождь был темным и вязким — тот самый злосчастный «черный дождь». В Хиросиме черный дождь выпал на большой площади — от центра города до окраин, загрязнив воду и траву. В реках погибла рыба, а в полях коровы.
Десятки тысяч жителей Хиросимы и Нагасаки, пережившие взрыв, как выяснилось, не избежали его последствий. Через несколько дней у них начали выпадать волocы и кровоточить десны. Люди страдали от безумной слабости и головной боли; появилась тошнота, рвота, анорексия и диарея. Рот и горло покрылись болезненными язвами. Началось носовое, ротовое и кишечное кровотечение. Те, у кого симптомы были наиболее сильны, погибали за несколько месяцев. Другие за два года слепли от катаракты. Многие умерли от рака через несколько лет или даже десятков лет. Радиоактивное облучение чаще всего вызывает лейкоз. Характерным признаком лейкоза являются пурпурные пятна на коже, которые возникают из-за агрегации пролиферирующих белых клеток крови (лейкоцитов). На протяжении 30 лет после взрыва у жителей Хиросимы лейкоз диагностировали в 15 раз чаще, чем у жителей других областей Японии. Через 15 лет после взрыва стало расти число случаев других видов рака с более длительным периодом развития, таких как рак легкого, молочной или щитовидной железы.
Угроза ядерной войны отступила, и теперь основное беспокойство общественности вызывает безопасность атомных электростанций и других потенциальных источников излучения. Вера в безопасность ядерных реакторов была подорвана в результате двух серьезных аварий: на Трехмильном острове в Пенсильвании в 1979 г. и в Чернобыле на Украине в 1986 г. Чернобыльская авария была самой страшной в истории: во время аварии погиб 31 человек, и тысячи получили высокие дозы облучения. Но даже если не говорить об авариях, усиливаются опасения относительно возможной утечки радиоактивного материала и загрязнения окружающей среды. В деревнях, расположенных поблизости от завода по переработке ядерного горючего в Селлафилде (Англия), увеличилось число случаев заболевания лейкозом. В других группах населения, подверженных воздействию радиоактивного излучения выше фонового уровня, также повышен риск развития этого заболевания. «Балканский синдром» (который считается одной из форм лейкоза) у военных, дислоцированных в районе Косово, а также, возможно, у тысяч местных жителей, связывают с использованием бронебойных боеголовок из обедненного урана. В группу риска могут попадать даже летчики и бортпроводники, поскольку на большой высоте они подвергаются дополнительному воздействию радиации.
Поэтому не приходится удивляться, что даже медицинское рентгеновское оборудование и радиотерапия порой вызывают у людей страх радиационного отравления. С конца 1970-х гг. в США не было построено ни одной новой атомной станции. Существование «безопасной» дозы облучения вот уже десятки лет является предметом споров. Как заявил один из экспертов, самый лучший практический подход заключается в том, чтобы максимально ограничить воздействие ионизирующего излучения на человека и надеяться на лучшее.
Вы, я полагаю, пытаетесь понять, какое отношение все это имеет к кислороду. Ответ заключается в том, что механизм действия радиации на биологические системы аналогичен механизму кислородной интоксикации. Он основан на серии реакций, связывающих кислород с водой. Смертельное влияние радиации и кислорода опосредовано одним и тем же набором промежуточных продуктов. Эти промежуточные продукты образуются и из воды, и из кислорода (рис. 7). При радиационном облучении они получаются из воды, а при отравлении кислородом — из кислорода. Но они образуются и при нормальном дыхании! Таким образом, дыхание можно рассматривать в качестве очень медленно прогрессирующей кислородной интоксикации. Мы увидим, что старение и старческие заболевания во многом связаны с этой формой кислородной интоксикации.
Недолговечные промежуточные продукты, возникающие под действием излучения и в процессе дыхания, называют свободными радикалами. Мы уже упоминали о них в главе 1. Далее мы встретимся с ними многократно. Строго говоря, не все промежуточные продукты этих процессов являются свободными радикалами, я использую данный термин для простоты. Точное соблюдение химической терминологии удлиняет формулировки. Иногда такие частицы называют «реакционноспособными формами кислорода», но это выражение громоздкое и неточное: не все эти соединения очень активны, а некоторые, такие как оксид азота NO, технически можно отнести к реакционноспособным соединениям азота. Термин «окислители» тоже некорректен в данном контексте, поскольку некоторые частицы, такие как супероксидный радикал, могут выступать и в роли восстановителей. Поэтому дальше я буду называть эти промежуточные продукты свободными радикалами.
Чтобы понять суть последующего повествования, вам нужно лишь усвоить, что свободные радикалы — это активные формы кислорода, которые в небольшом количестве постоянно образуются в организме в процессе дыхания. Конечно, это сильно упрощенное определение. Поэтому в данной главе мы несколько подробнее поговорим о них и о механизмах их образования.
Беккерель первым обратил внимание на расщепление воды под действием радиации. Он начал экспериментировать с радием вскоре после того, как Мария Кюри выделила достаточное для работы количество этого элемента. В конце 1890-х гг. Беккерель классифицировал известные варианты радиоактивного излучения в соответствии с их проникающей способностью. Излучение, которое можно перекрыть листом бумаги, названо альфа-излучением (на самом деле это поток ядер гелия). Излучение, экранируемое металлической пленкой миллиметровой толщины, стало называться бета-излучением (теперь известно, что это поток быстрых электронов). А излучение, которое входит в металлическую пластину на глубину один сантиметр, — это гамма-излучение (электромагнитные лучи, близкие по энергетическому диапазону к рентгеновским лучам). Все три типа излучения способны выбивать электроны из атомов, в результате чего атомы приобретают электрический заряд. Вот почему Кюри обнаружили электрическое поле вокруг образца уранинита. Потеря или приобретение электронов атомом (с образованием положительно или отрицательно заряженных ионов) называется ионизацией, а потому это излучение называется ионизирующим излучением. Излучение сопровождается и другими процессами, такими как выделение тепла, возбуждение электронов, расщепление химических связей, а также ядерные реакции, о которых мы говорили в главе 3.
Беккерель обнаружил, что радий испускает альфа- и гамма-лучи. Под действием этого излучения вода расщепляется на водород и кислород. Сам по себе факт расщепления воды на составляющие элементы не был неожиданностью, поскольку еще Лаплас и Лавуазье в 1770-х гг. показали, что вода состоит из водорода и кислорода. Однако излучение не может сразу расщепить воду на газообразные молекулы водорода и кислорода (Н2 и О2) из-за «неправильного» соотношения атомов в молекуле воды (Н2О):
В школе вам наверняка приходилось составлять химические уравнения. Так вот это уравнение незакончено. Мы имеем два атома кислорода в правой части и лишь один атом в левой части. Чтобы придать уравнению законченный вид, удвоим число молекул воды:
Но когда речь идет об излучении, дело обстоит иначе. Это не химическая реакция между молекулами, а взаимодействие излучения с одной молекулой воды. Ионизирующая радиация всегда действует на вещество на уровне отдельных атомов, и поэтому в данном процессе не образуются сразу молекулы водорода и кислорода. Состав первичных продуктов этой реакции обсуждался учеными на протяжении всего ХХ в., поскольку продукты эти очень недолговечны. Даже сегодня в данном вопросе нет полной ясности. Первую стадию можно записать следующим образом:
Здесь Н+ — это протон (атом водорода, потерявший электрон), е- — растворенный (сольватированный) электрон, а ОН+ — свободный радикал, называемый гидроксильным радикалом. Эта безжалостная молекула относится к числу самых реакционноспособных химических частиц.
Свободными радикалами называют молекулы, которые можно выделить в виде индивидуальных частиц и которые обладают неспаренным электроном. Такие частицы характеризуются неустойчивой электронной конфигурацией. Они ищут стабильности, достичь которой могут в результате реакций с другими молекулами. Таким образом, многие свободные радикалы являются очень активными химическими частицами. Однако неправильно будет сказать, что все свободные радикалы очень реакционноспособны. Например, молекула кислорода содержит два неспаренных электрона и поэтому в принципе может быть названа свободным радикалом. Но тот факт, что в присутствии кислорода немедленно не возникает пожар, свидетельствует, что не все свободные радикалы чрезвычайно активны. Мы поговорим об этом чуть позже.
В приведенной выше реакции атом кислорода потерял один электрон, но до образования газообразной молекулы О2 еще далеко. Для превращения молекулы воды в молекулу кислорода два атома кислорода должны отдать четыре электрона. В обратном процессе превращения кислорода в воду, как при дыхании, к двум атомам кислорода необходимо добавить четыре электрона. Электроны теряются или приобретаются по одному, через образование трех промежуточных соединений: гидроксильного радикала (ОН+), пероксида водорода (Н2О2) и супероксидного радикала (О2-+)[33]. Эти продукты возникают как при превращении кислорода в воду, так и при превращении воды в кислород (см. рис. 7). И именно они отвечают более чем за 90% повреждений биологических молекул, происходящих под действием некоторых форм радиации.
Радиация может напрямую оказывать влияние на любые молекулы, но в человеческом теле она в основном взаимодействует с водой. В значительной степени это связано просто с фактором вероятности: человеческое тело на 45 — 75% состоит из воды, в зависимости от возраста и количества жировых отложений. Самое высокое содержание воды — в организме ребенка, до 75%, организм взрослого мужчины содержит 60% воды. В организме взрослой женщины обычно больше подкожного жира и около 55% воды. Кроме того, определенную роль играют молекулярные факторы. Например, некоторые формы радиации, такие как рентгеновские и гамма-лучи, взаимодействуют в первую очередь с химическими связями в молекуле воды, а уже затем со связями между атомами углерода в органических молекулах. Это означает, что полные пожилые женщины (со сравнительно низким содержанием воды в организме) с большей вероятностью выживут после воздействия такого излучения, чем маленькие дети.
Образующиеся при облучении воды промежуточные соединения в химическом плане ведут себя совершенно по-разному. Однако, поскольку все они связаны между собой и могут превращаться друг в друга, их можно считать одинаково опасными. Эти три частицы действуют сообща в единой каталитической системе. Мы поговорим о них в том порядке, в котором они появляются при превращении воды в кислород.
Первыми образуются гидроксильные радикалы. Это чрезвычайно активные частицы, настоящие разбойники, которые атакуют любые биологические молекулы со скоростью, приближающейся к скорости их диффузии. Они реагируют с первыми попавшимися молекулами, и остановить их практически невозможно. Если вы когда-нибудь видели рекламу антиоксидантов, которые «очищают» организм от гидроксильных радикалов, знайте, что это полная бессмыслица. Гидроксильные радикалы реагируют настолько быстро, что нападают на любые молекулы, включая «очищающие». Чтобы вывести гидроксильные радикалы из организма, «очищающих молекул» должно быть больше, чем всех других молекул, вместе взятых, тогда есть шанс, что они примут удар на себя. Но в такой высокой концентрации любое вещество, даже самое полезное, убьет вас, поскольку будет мешать нормальному функционированию клеток.
После образования гидроксильных радикалов начинается целая череда неприятностей. Когда гидроксильный радикал атакует молекулу белка, липида или ДНК, он отнимает у них электрон и превращается в спокойнейшую молекулу воды. Однако обворованной молекуле теперь не хватает электрона. Вместо гидроксильного радикала образуется другой радикал — радикал белка, липида или ДНК. Как будто обворованный человек теряет разум, сам становится грабителем и не успокаивается, пока не обворует кого-нибудь еще. В этом суть всех реакций с участием свободных радикалов: один радикал всегда порождает второй, и если этот радикал тоже активен, происходит цепная реакция. Таким образом, основное свойство свободных радикалов — наличие неспаренного электрона, а основное свойство свободнорадикальных процессов — цепные реакции.
Мы все знакомы с проявлениями свободнорадикальных цепных реакций. Например, из-за них портится сливочное масло: жиры окисляются, и вкус становится прогорклым. Аналогичные процессы происходят в клеточных мембранах, в значительной степени состоящих из липидов. Это так называемое переокисление липидов. Все мучительные попытки остановить переокисление липидов оказывались безуспешными. Повреждения белков и ДНК заметны в меньшей степени, однако повреждение ДНК свободными радикалами является одной из главных причин генетических мутаций и отчасти объясняет высокую вероятность развития рака у людей, подвергшихся радиоактивному облучению.
Ярким примером свободнорадикальных реакций в небиологических системах является повреждение озонового слоя атмосферы. Разрушительное влияние хлорфторуглеводородов (ХФУ), таких как фреон, связано с образованием свободных радикалов в верхних слоях атмосферы. ХФУ — прочные молекулы, которые не разрушаются в насыщенных водяными парами нижних слоях атмосферы. Но выше они расщепляются под действием ультрафиолетовых лучей, высвобождая атомы хлора. Атомам хлора до заполнения электронной оболочки не хватает всего одного электрона, и поэтому они чрезвычайно реакционноспособны. Они могут отнимать электроны практически у любых молекул. Всего одного атома хлора достаточно, чтобы запустить цепную реакцию, уничтожающую 100 тыс. молекул озона. По данным Агентства по охране окружающей среды США, 1 г фреона может разрушить 70 кг озона.
Остановить цепную реакцию с участием свободных радикалов можно лишь двумя способами: либо за счет реакции между двумя радикалами, в результате которой их неспаренные электроны образуют счастливый союз, либо за счет создания малоактивных свободных радикалов, не поддерживающих цепных реакций (как грабитель, который перестал воровать из-за угрызений совести). В этих процессах участвуют некоторые известные антиоксиданты, такие как витамины С и Е. Хотя продукты их реакций тоже являются свободными радикалами, они настолько неактивны, что цепные реакции прекращаются, не нанося большого вреда.
Если под действием излучения вода теряет второй электрон, образуется пероксид водорода (перекись), известный своими отбеливающими свойствами. Отбеливающий эффект — результат окисления органических пигментов, у которых пероксид водорода отнимает электроны. Благодаря окислительным свойствам пероксид водорода убивает бактерий, и отчасти этим вызвана слабая антисептическая активность меда, который с древних времен использовали для заживления ран. Основное промышленное применение пероксида водорода тоже связано с его окислительной активностью. Например, его употребляют для окисления примесей в воде и промышленных стоках, для отбеливания тканей и бумаги, а также для обработки пищевых продуктов, минеральных веществ, продуктов перегонки нефти и детергентов.
Хотя это вещество широко используют в качестве окислителя, по химической активности оно располагается между водой и кислородом, что объясняет двойственность его свойств. Пероксид водорода ведет себя в зависимости от окружения, как грабитель, который может встать на путь исправления. Более того, в реакции между двумя молекулами пероксида водорода происходят превращения одновременно в двух направлениях: одна молекула получает два электрона и становится водой, а другая отдает два электрона и образует кислород. Разложение пероксида водорода отчасти является причиной выделения кислорода из воды под действием радиации:
Однако значительно более важная и опасная реакция происходит в присутствии железа, которое может передавать пероксиду водорода поочередно по одному электрону, в результате чего образуются гидроксильные радикалы. Если в среде присутствует растворенное железо, пероксид водорода представляет реальную опасность. Организмы всеми силами стараются избежать поглощения растворенного железа. Реакцию между пероксидом водорода и железом называют реакцией Фентона по имени химика Генри Фентона из Кембриджа, впервые описавшего ее в 1894 г.:
Фентон показал, что эта реакция может приводить к повреждению самых разных органов. Основная причина токсичности пероксида водорода заключается в том, что в присутствии растворенного железа он образует гидроксильные радикалы, но самая большая опасность кроется в низкой реакционной способности пероксида водорода в отсутствие железа. У пероксида водорода есть время на то, чтобы войти в клетку и даже проникнуть в ядро, где он смешивается с ДНК и в присутствии железа превращается в активный гидроксильный радикал[34]. Из-за этого коварного действия пероксид водорода оказывается еще опаснее, чем гидроксильные радикалы, образующиеся вне ядра. Железо содержится во многих белках, в том числе в гемоглобине. Если железосодержащие белки встречаются с пероксидом водорода, они мгновенно теряют активность. Пероксид водорода — как гангстер: тихий субъект, практически неопасный для большинства случайных прохожих, но мгновенно проявляющий агрессию при встрече с членом другой банды. Повреждение железосодержащих белков может быть столь же быстрым и специфичным, как удар под дых.
Итак, мы обсудили свойства двух из трех промежуточных соединений на пути превращения воды в кислород. Первое промежуточное соединение, гидроксильный радикал, является одним из самых реакционноспосооных химических веществ. Он реагирует со всеми биологическими молекулами за миллионные доли секунды, вызывая цепные реакции, усиливающие повреждение. Второе промежуточное соединение, пероксид водорода, гораздо менее активно, почти инертно, но лишь до тех пор, пока не встретится с железом (в растворе или в молекуле белка). В результате быстрой реакции с железом образуются гидроксильные радикалы, вновь возвращающие нас к первой стадии процесса. А что можно сказать о третьем промежуточном соединении, супероксидном радикале (О2-+)? Подобно пероксиду водорода, это не очень активный радикал[35]. Однако он тоже имеет сродство к железу и выводит его из комплексов с белками и из тканевых депо. Чтобы понять, чем это грозит, нужно опять обратиться к реакции Фентона.
Опасность реакции Фентона заключается в том, что она приводит к образованию гидроксильных радикалов, но, когда все доступное железо использовано, она останавливается. Любая другая химическая реакция, приводящая к образованию растворимых форм железа, способствует возобновлению реакции Фентона. Поскольку у супероксидного радикала есть один лишний электрон, мешающий ему превратиться в молекулярный кислород, он с наибольшей вероятностью отдаст этот электрон, чем получит где-то еще три электрона и превратится в воду. Однако очень немногие молекулы способны принимать единственный электрон. Самым подходящим акцептором, которому супероксидный радикал может передать свой электрон, является ион железа. В результате железо опять переходит в ту форму, в которой может участвовать в реакции Фентона:
Таким образом, три промежуточных соединения на пути между водой и кислородом образуют коварную циклическую систему, которая в присутствии железа повреждает биологические молекулы. Супероксидные радикалы высвобождают запасенное железо, переводя его в растворимую форму. Пероксид водорода взаимодействует с железом, образуя гидроксильные радикалы. Гидроксильные радикалы атакуют любые белки, жиры и ДНК, инициируя деструктивные цепные реакции, нарушающие функцию клеток.
Те же самые промежуточные соединения образуются из кислорода при дыхании. В начале 1950-х гг. на сходство между токсичностью кислорода и облучением обратила внимание Ребека Гершман, тогда работавшая в Университете Рочестера (в рамках Манхэттенского проекта там проводились исследования влияния радиации на биологические системы). На ее семинаре в 1953 г. этими данными заинтересовался молодой аспирант Даниел Гилберт, ранее изучавший физиологию мышечной ткани. Гершман и Гилберт предположили, что свободные радикалы кислорода ответственны за летальные повреждения организма при отравлении кислородом и при облучении. Их данные были опубликованы в знаменитой статье в журнале Science в 1954 г. под недвусмысленным заголовком «Отравление кислородом и ультрафиолетовое излучение — общность механизмов», который я использовал в названии данной главы. Проведенные с тех пор исследования подтверждают, что радиационные повреждения и кислородная интоксикация имеют между собой очень много общего.
Кислород — удивительный элемент. Теоретически кислород легче отбирает электроны у других молекул, чем вода отдает свои электроны. Вода — химически устойчивое вещество. Чтобы забрать у воды электроны, нужно затратить энергию, источником которой может быть ионизирующее или ультрафиолетовое излучение или солнечный свет (при фотосинтезе). Напротив, реакции с участием кислорода сопровождаются выделением энергии. Горение — реакция между кислородом и соединениями углерода, и выделяющееся в ходе этой реакции тепло свидетельствует о том, что реакция может протекать почти спонтанно. В энергетическом плане не важно, быстро ли сжигается топливо, как при горении, или медленно, как при дыхании. Вне зависимости от того, идет ли речь о метаболизме или горении, из 125 г сахара (столько его нужно для приготовления бисквитного пирога) образуется 1790 кДж (428 ккал) энергии — достаточно, чтобы вскипятить 3 л воды или поддерживать горение лампочки мощностью 100 Вт на протяжении 5 часов.
Тот факт, что при такой благоприятной энергетике и обилии кислорода в атмосфере все вокруг не возгорается самопроизвольно, указывает на непонятное нежелание кислорода вступать в химические реакции. Дело заключается в химических связях между атомами в молекуле кислорода. Химия кислорода сложна, но она объясняет не только образование свободных радикалов в человеческом организме, но и невозможность самопроизвольного возгорания. Давайте немного поговорим об этом. В 1891 г. великий шотландский химик сэр Джеймс Дьюар обнаружил у кислорода магнитные свойства. Это открытие было сделано в жестокой борьбе за получение жидкого кислорода. Соревнование выиграл француз Луи Кайете, который добыл несколько капель жидкого кислорода накануне Рождества 1877 г., едва опередив своего швейцарского соперника Рауля Пикте. Годом позже Дьюар демонстрировал изумленной публике получение жидкого кислорода во время одного из пятничных вечеров в Королевском институте. Дьюар был звездой на этих вечерах, которые традиционно проходили в знаменитой аудитории, где многие приглашенные совершенно терялись перед бьющим в зале «фонтаном красноречия». Но Дьюар был не только одаренным исполнителем, но и одним из лучших экспериментаторов того времени. К середине 1880-х гг. он усовершенствовал свой метод и смог получить достаточно жидкого кислорода, чтобы подробно изучить его свойства. Вскоре он обнаружил, что жидкий кислород (на самом деле озон, О3) притягивается к полюсам магнита. В 1891 г. на одном из пятничных вечеров Дьюар с присущим ему артистизмом демонстрировал аудитории свое открытие, используя сильный магнит и недавно созданный им вакуумный сосуд, который теперь во всех лабораториях мира называют сосудом Дьюара. Этот опыт стал классическим, его показывают студентам во многих университетах (вы можете найти его демонстрацию в Интернете). Жидкий кислород выходит из сосуда Дьюара, притягиваемый магнитом. Жидкость повисает в воздухе и налипает на магнит, образуя облако, которое прогибается между полюсами магнита, а затем испаряется.
Что же при этом происходит? В 1925 г. Роберт Малликен смог объяснить магнитные свойства кислорода, применив сформулированную незадолго до того квантовую теорию. Магнитные свойства вещества объясняются спином неспаренного электрона, а как показал Малликен, в молекуле кислорода есть два неспаренных электрона[36]. Именно они определяют химические свойства этого элемента и усложняют получение молекулярным кислородом других электронов для образования химических связей (рис. 8). Из данного химического тупика есть два выхода. Во-первых, кислород может получить энергию от другой молекулы, возбужденной теплом или светом, что изменит спин одного из неспаренных электронов кислорода. Такое действие оказывают некоторые пигменты, что используется для фотодинамической терапии, основанной на способности активированного светом пигмента разрушать опухоли или другие патологические ткани.
Изменение спина одного электрона приводит к образованию электронной пары и освобождению одной орбитали, что позволяет кислороду вступать в реакции (снимаются так называемые спиновые ограничения). Кислород в такой форме называют синглетным кислородом. Он быстро реагирует с органическими молекулами. Если бы синглетный кислород был единственной формой кислорода, он никогда бы не накапливался ни в атмосфере, ни в океане.
Второй способ заставить кислород вступать в химические реакции заключается в том, чтобы передавать ему дополнительные электроны по одному, так чтобы каждый из двух неспаренных электронов получил подходящего партнера независимо от другого. Это может делать железо, поскольку оно имеет собственные неспаренные электроны (которые объясняют его магнитные свойства) и существует в разных состояниях окисления, которые в нормальных условиях характеризуются примерно одинаковой энергетической стабильностью. (Отчасти дело в том, что атом железа большой и удаленные от ядра электроны связаны с ним не очень прочно.) Способность железа передавать электроны по одному объясняет его сродство к кислороду и ржавление железных изделий и минералов. С этим же связана необходимость прятать железо в организме в молекулярные ловушки. Некоторые другие металлы, например медь, которые тоже могут существовать в двух или нескольких степенях окисления, эффективно передают электроны кислороду и поэтому в свободном виде тоже опасны.
Живые системы вынуждены учитывать странные химические свойства кислорода и, чтобы заставить его реагировать, передают ему электроны по одному. Клетки научились разделять процесс окисления пищи на отдельные стадии, на каждой из которых выделяется некоторое количество энергии, запасаемой в виде молекул АТФ (см. главу 3). К сожалению, на каждой стадии могут выделяться одиночные электроны, способные присоединяться к кислороду с образованием супероксидных радикалов. Непрерывное возникновение супероксидных радикалов в клетках означает, что, как ни странно, дыхание таит в себе ту же опасность, что и облучение.
Когда мы находимся в состоянии покоя, от 1 до 2% поглощенного клетками кислорода выделяется в виде супероксидных радикалов, а при физической активности этот показатель может достигать 10%. Эти цифры не кажутся угрожающими, но следует помнить, что при каждом вдохе мы поглощаем много кислорода. Взрослый человек с массой тела 70 кг за минуту вдыхает около четверти литра кислорода. Даже если лишь 1% превращается в супероксидные радикалы, за год человек производит 1,7 килограмма этих частиц. А из супероксидных радикалов в соответствии с приведенными выше реакциями могут возникать гидроксильные радикалы и пероксид водорода.
Они могут возникать, но возникают ли они на самом деле? Человеческий организм выработал эффективные механизмы устранения супероксидных радикалов и пероксида водорода до того, как они встретятся с железом и образуют гидроксильные радикалы (подробнее об этих механизмах мы поговорим в главе 10). Можно ли оценить, сколько гидроксильных радикалов все же образуется в организме, несмотря на указанные защитные механизмы?
К решению этой задачи можно подойти с двух сторон. Во-первых, теоретически мы способны рассчитать скорость образования гидроксильных радикалов на основе оценочных значений стационарной концентрации пероксида водорода и железа и известной кинетики реакции. По-видимому, в теле человека пероксид водорода и железо содержатся в стационарной концентрации около миллионной части грамма на килограмм массы тела. Это означает, что в организме образуется меньше 10-12 г гидроксильных радикалов на килограмм массы тела в секунду. Представить себе столь малую величину невозможно, но, если с помощью числа Авогадро перевести количество граммов в количество молекул, получаем значительно более понятное значение: в каждой клетке человеческого тела за секунду образуется примерно 50 гидроксильных радикалов[37]. Это означает, что за сутки каждая клетка выделяет 4 млн гидроксильных радикалов! Многие из них нейтрализуются тем или иным способом, а поврежденные молекулы ДНК или белков заменяются новыми, но со временем в организме, состоящем из 15 × 1012 клеток, накапливаются повреждения, которые вполне могут быть причиной старения.
Все хорошо, но пока это только теория. Если в клетках происходят такие серьезные повреждения, мы должны иметь возможность их измерить. Второй путь оценки количества выделяемых гидроксильных радикалов как раз и заключается в анализе нанесенных ими повреждений. Один метод анализа был разработан в конце 1980-х гг. Брюсом Эймсом и его группой в Беркли. Ученые следили за содержанием окисленных фрагментов расщепления ДНК в моче. Однако на этом пути возникает несколько сложностей. ДНК постоянно подвергается воздействию различных ферментов в нормальных процессах репликации и репарации, так что лишь некоторые типы окисленных фрагментов ДНК являются результатом действия гидроксильных радикалов, а другие могут возникать в нормальных физиологических процессах. Таким образом, мы должны точно знать, какие фрагменты являются результатом действия гидроксильных радикалов и какую часть всего набора фрагментов они составляют.
Одно такое основание — 8-гидроксидезоксигуанозин (8-ОНdG) — химически модифицированная форма дезоксигуанозина (G в четырехбуквенном коде ДНК). Эймс и его коллеги измеряли концентрацию этого вещества в моче крыс, а затем на основании полученных данных пытались рассчитать число гидроксильных радикалов, которые «атакуют» ДНК в каждой клетке тела крысы. Они пришли к выводу, что за сутки в каждой клетке происходит до 10 тыс. таких «атак», но бóльшая часть повреждений ликвидируется, и поэтому 8-OHdG оказывается в моче. В более поздних исследованиях аналогичный анализ был выполнен на людях. В клетках человека, по-видимому, выделяется меньше гидроксильных радикалов, чем в клетках крыс, но все же число «атак» за сутки в одной клетке достигает нескольких тысяч. Это на несколько порядков меньше, чем приведенное выше расчетное значение (4 млн радикалов), однако не стоит забывать, что речь идет только о повреждениях ДНК, но не о возможных повреждениях липидов клеточных мембран или белков, которых в клетке значительно больше, чем ДНК.
Несмотря на сильный разброс данных, тот факт, что гидроксильные радикалы образуются и при дыхании, и под действием излучения, позволяет сравнивать между собой эти процессы. Джеймс Лавлок использовал примерно такие же значения для расчета эквивалентной дозы облучения, которую мы получаем в процессе дыхания. По его оценкам, за год в процессе дыхания в организме возникают такие же повреждения, как при однократном поглощении дозы в 1 зиверт (1 Дж/кг). Доза облучения при стандартном рентгенологическом обследовании грудной клетки составляет 50 мкЗв, так что год дыхания кислородом оказывается в 10 тыс. раз более опасным, чем рентген грудной клетки, или в 50 раз более опасным, чем все излучение, которое мы в норме получаем из самых различных источников за всю жизнь.
Да, цифры впечатляющие, но не совсем честные. Для начала, мы не знаем, подвергается ли «атакам» функциональная или так называемая мусорная ДНК, которая ничего не кодирует, но составляет преобладающую часть человеческой ДНК. Кроме того, между дыханием и облучением есть одно важное различие — начальная точка. Под действием излучения из воды сразу образуются гидроксильные радикалы, случайным образом распределенные во внутриклеточном пространстве. Поскольку в норме мы не подвергаемся высоким дозам радиоактивного излучения, у нас нет механизма немедленной защиты. Напротив, при дыхании поначалу образуются в основном супероксидные радикалы, которые менее реакционноспособны, чем гидроксильные, и у клеток больше времени для их уничтожения. Кроме того, супероксидные радикалы образуются в строго определенном месте, и клетки умеют от них защищаться. Возможно также, что существует некий порог репарации, связанный с силой повреждений. При дыхании повреждения в ДНК накапливаются медленно, так что практически все они могут быть исправлены. Понятно, что при сильном облучении, сопровождающимся большим количеством повреждений за короткий промежуток времени, ситуация совсем иная.
Однако на качественном уровне средства защиты от радиационной и кислородной интоксикации одни и те же. Гершман, Гилберт и другие ученые, занимавшиеся данным вопросом в 1950-х гг., это поняли и установили, что некоторые антиоксиданты помогали защитить мышь от летальной дозы рентгеновских лучей и кислородной интоксикации.
Разобраться в этом помогла одна удивительная бактерия, которая невероятно устойчива к ионизирующему излучению — в 200 раз устойчивее всем известной кишечной палочки (Escherichia coli) и, возможно, в 3000 раз устойчивее человека. Это настолько неожиданно, что астрофизик Фред Хойл предположил, что эта бактерия попала на Землю из космоса. Хойл высказал свою идею в подтверждение теории панспермии (что означает «семена повсюду») в 1983 г. в книге «Разумная Вселенная». Споры бактерий настолько нечувствительны к излучению, что могут находиться в космосе, практически не испытывая влияния космических лучей. Это позволяет предположить, что жизнь могла быть привнесена на Землю из космоса. Идеи Хойла развил космолог Пол Дейвис в книге «Пятое чудо». Он считает, что такая высокая радиационная устойчивость имеет смысл только в том случае, если жизнь на какой-то стадии развития вынуждена была пройти через испытание излучением.
Маленький монстр, о котором пишут Хойл и Дейвис, представляет собой красноватую бактерию Deinococcus radiodurans, относящуюся к небольшому семейству из шести бактерий, и все они устойчивы к радиации. Эта бактерия является одним из самых радиационно устойчивых организмов на Земле. Впервые ее обнаружили в облученном консервированном мясе, а затем — в выветренных гранитных скалах почти безжизненной Антарктики, на стерилизованных излучением медицинских инструментах, а также во множестве вполне обычных мест, таких как комнатная пыль или экскременты животных. Бактерия устойчива не только к действию ионизирующего излучения, но и к разным другим типам физического и химического воздействия, включая ультрафиолетовое излучение, нагревание, высушивание и действие пероксида водорода и различных токсинов. Этот комплекс качеств, возможно, позволит использовать D. radiodurans для восстановления среды, пострадавшей от излучения и химического воздействия. Наличие коммерческого потенциала вызвало интерес к исследованиям генома (полного набора генов) данной бактерии. В ноябре 1999 г. в журнале Science Оуэн Уайт и большая группа ученых (в основном из Института геномных исследований в Роквилле, Мэриленд) опубликовали полную нуклеотидную последовательность ее генома. И теперь мы гораздо лучше понимаем, в чем дело.
Эта бактерия — химера, прекрасный пример способности природы быстро находить решение, исходя из уже существующих элементов, и придавать ему вид заранее продуманного плана. Здесь нет никакого волшебства, и космос тут ни при чем. Практически все механизмы репарации ДHK, имеющиеся у D. radiodurans, есть и у других бактерий, но они редко соединяются в одной клетке. Единственным уникальным свойством D. radiodurans является удивительно эффективная система удаления отработанного материала, с помощью которой все поврежденные молекулы удаляются из клетки до того, как они вновь встроятся в ДНК в процессе репарации или репликации. Удивительная живучесть бактерии объясняется наличием множества копий ее собственных генов, а также генов, полученных от других бактерий[38]. Большинству бактерий для счастливой жизни хватает всего нескольких защитных механизмов, тогда как D. radiodurans собрала их все, причем во множестве копий. Это позволяет бактерии процветать в неблагоприятных условиях, где у нее значительно меньше конкурентов.
Так что, скорее всего, речь не идет ни о каком испытании космическим излучением, о котором говорил Дейвис. По-видимому, Deinососсиs относительно недавно адаптировались к воздействию излучения. В статье в Science Уайт с коллегами сравнили геном D. radiodurans с геномами другиx бактерий и обнаружили, что ее ближайшим родственником является экстремальный термофил Thermus thermophilus. Из 175 генов T. thermophilus 143 имеют двойников в клетках D. radiodurans. Возможно, устойчивость бактерии к широкому спектру неблагоприятных воздействий возникла в результате модификации систем, изначально предназначавшихся для жизни при высокой температуре.
Здесь следует сделать одно важное замечание, к которому мы еще вернемся позднее. Гены, защищающие клетки от ионизирующего излучения, также оберегают от кислородной интоксикации и от многих других типов стресса, таких как нагревание, инфекция, тяжелые металлы или токсины. Человеческие гены, активированные излучением, защищают от кислородной интоксикации, малярии и отравления свинцом. Причина такой перекрестной защиты заключается в том, что многие стрессовые воздействия в клетках развиваются по одинаковому патологическому пути, и поэтому одни и те же механизмы могут защищать от разных видов стресса. Этот общий патологический путь представляет собой окислительный cmрecc — нарушение равновесия между производством свободных радикалов и антиоксидантной защитой. Однако окислительный стресс — не только патологический процесс, но и сигнал,сообщающий клетке об опасности. Таким образом, это одновременно и угроза, и сигнал, позволяющий противостоять этой угрозе. Так, бомбардировка Перл-Харбора японскими войсками была одновременно актом агрессии и сигналом Америке о необходимости вступить в войну.
Интеграция различных защитных механизмов для борьбы с окислительным стрессом позволяет предположить, что жизнь могла изобрести пути противостояния кислородной интоксикации задолго до появления кислорода в атмосфере — под воздействием ионизирующего излучения. Мы уже пришли к выводу, что увеличение концентрации кислорода в воздухе не было причиной массового исчезновения живых организмов в докембрийском периоде и после него. Поскольку кислород, безусловно, токсичен, жизнь должна была каким-то образом адаптироваться к этой угрозе заранее. Может ли быть, что жизнь сначала адаптировалась к космическому излучению и это cталo основой адаптации к другим источникам oпасности? Если это так, то Фред Хойл и Пол Дейвис были в определенном смысле правы. Жизнь действительно была подвергнута испытанию радиацией, но это произошло не в космосе, а на Земле, и не недавно, а 4 млрд лет назад.
Такой сценарий подтверждается открытиями, сделанными на Марсе с помощью космического аппарата «Викинг» в 1976 г. «Викинг» был оборудован инструментами для проведения трех экспериментов с целью поиска признаков жизни в марсианской почве. Результаты экспериментов не позволили сделать однозначных выводов, и корректность интерпретации обсуждается до сих пор. Однако результаты одного эксперимента, хотя и не давали очевидного ответа, оказались совершенно неожиданными. Эксперимент должен был выявить различия в составе газовой смеси, производимой микробами и химическими процессами. Образцы поверхности Марса инкубировали в сухой, чуть влажной или очень влажной среде, а затем в них анализировали газовую фазу. Предварительно образцы обрабатывали питательным бульоном, состоящим из смеси органических соединений и неорганических солей, которую Гилберт Левайн (один из ученых, стоявших у истоков создания «Викинга» и активный защитник идеи существования марсианской жизни) назвал «куриным бульоном». Эксперимент проходил в два этапа. Сначала с бульона снимали крышку, чтобы выходящие из него пары воды увлажнили почву в емкости с образцом. Затем на почву выливали небольшое количество бульона, чтобы запустить метаболизм любых присутствующих в образце организмов.
К удивлению ученых, удаление крышки сразу приводило к выделению из марсианской почвы большого количества кислорода — в 130 раз больше, чем показывали предварительные расчеты. Ученые решили, что бульон, возможно, стимулировал процесс фотосинтеза, однако те же самые реакции происходили и в темноте, и даже после того, как образцы выдерживали при температуре 145 °С на протяжении 3,5 часа, чтобы убить всех микробов. Но когда после активной фазы выделения кислорода к образцу добавляли свежий бульон, кислород больше не выделялся, что свидетельствовало о завершении процесса. Хотя этот эксперимент напрямую не отрицает наличие в почве живых организмов, его легче объяснить в рамках химии, чем биологии. По-видимому, xимический cocтaв почвы был очень богатым, поскольку выделение газа наблюдалось даже при добавлении простой воды. После некоторых размышлений ученые пришли к выводу, что в образцах почвы содержались супероксиды и пероксиды, образовавшиеся под действием ультрафиолетового излучения на атмосферу или на саму почву. Этот вывод был подтвержден анализом химического состава горных пород.
Что же произошло на Марсе? Можно предположить, что гидроксильные радикалы, пероксид водорода и супероксидные радикалы возникали на протяжении длительного времени в результате расщепления воды в почве или в атмосфере под действием ультрафиолетового излучения. Поскольку воды больше не было, эти активные соединения стали взаимодействовать с железом и другими минеральными веществами в почве, что привело к образованию ржавчины и придало планете характерный красный цвет. На Земле эти соединения, скорее всего, разложились бы, но в сухих и стерильных условиях на Марсе они сохранились. Когда с емкости с бульоном снимали крышку, замершие химические реакции сразу доходили до конца. При распаде неустойчивых оксидов железа «законсервированные» радикалы вступали в реакции, заставляя горные породы выделять воду и кислород. Забавно, но героям из научно-фантастических романов, желающим обезвредить почву и наполнить марсианский воздух кислородом, понадобилось бы лишь немного теплой воды, и Красная планета могла бы стать голубой.
Из всего сказанного следует, что Марс находится в состоянии сильного окислительного стpeсса. Хотя в его неплотной атмосфере содержится лишь 0,15% кислорода, развитие любых гипотетических форм марсианской жизни ограничено токсичностью различных форм кислорода, образовавшихся под воздействием космического излучения. И если это так, на Земле 4 млрд лет назад имела место точно такая же ситуация. Земля расположена ближе к Солнцу и подвержена более интенсивному воздейcтвию излучения. Пока не было кислорода, отсутствовал и озоновый слой, и жесткие ультрафиолетовые лучи проникали до самой поверхности Земли. Но традиционная точка зрения о том, что континенты и мелкие моря были простерилизованы космическими лучами, больше не выдерживает критики. Hовые факты доказывают, что устойчивость к кислороду и излучению появилась у самых первых земных организмов. Значение этого факта для эволюции и для нашей с вами жизни чрезвычайно велико, о чем мы и поговорим в последующих главах.