Переги'ба то'чка, точка М плоской кривой, обладающая следующими свойствами: в точке М кривая имеет единственную касательную; в достаточно малой окрестности точки М кривая расположена внутри одной пары вертикальных углов, образуемых касательной и нормалью . Примером П. т. является точка (0, 0) кривой у = x3 . Пусть кривая задана уравнением y = f (x ), где функция f (x ) имеет непрерывную вторую производную f’' (x ). Если точка с координатами [х0 , f (x0 )] является П. т., то f''(x) = 0 (отсюда следует, что в П. т. кривизна линии равна нулю); обратное утверждение неверно. Например, последнее равенство выполняется для кривой у = x4 в точке (0, 0), хотя эта точка не является П. т. Полное исследование вопроса, будет ли данная точка кривой П. т., требует привлечения производных более высоких порядков (если они существуют) или других дополнительных рассмотрений. (см. рис. )
Рис. к ст. Перегиба точка.
ТЕЛЕГРАМКанал с обзорами, анонсами новинок и книжными подборками
Книжный Вестник
Бот для удобного поиска книг (если не нашлось на сайте)
Поиск книг
Свежие любовные романы в удобных форматах
Любовные романы
Детективы и триллеры, все новинки
Детективы
Фантастика и фэнтези, все новинки
Фантастика
Отборные классические книги
Классика
Библиотека с любовными романами, которая наверняка придётся по вкусу женской части аудитории
Любовные романы
Библиотека с фантастикой и фэнтези, а также смежных жанров
Фантастика
Самые популярные книги в формате фб2
Топ фб2
книги