When shared ownership between threads is needed, Arc(Atomic Reference Counted) can be used. This struct, via the Clone implementation can create a reference pointer for the location of a value in the memory heap while increasing the reference counter. As it shares ownership between threads, when the last reference pointer to a value is out of scope, the variable is dropped.
fn main() {
use std::sync::Arc;
use std::thread;
// This variable declaration is where its value is specified.
let apple = Arc::new("the same apple");
for _ in 0..10 {
// Here there is no value specification as it is a pointer to a reference
// in the memory heap.
let apple = Arc::clone(&apple);
thread::spawn(move || {
// As Arc was used, threads can be spawned using the value allocated
// in the Arc variable pointer's location.
println!("{:?}", apple);
});
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX