Творение Вселенной

В двадцатые годы нашего столетия было до­казано, что наша Вселенная находится в ста­дии расширения. Научный анализ показал, что ее расширение началось примерно 15—20 миллиардов лет тому назад. Что же было до этого? Легче сказать, чего не было. Не было ни пространства, ни времени. По­нятие пространства связано с веществом, а понятие времени — с какими-либо процес­сами. Таким образом, современная наука пришла к заключению, что акт творения Вселенной начался примерно 15—20 милли­ардов лет тому назад. Любопытно, что Мои­сей при описании акта творения Мира Бо­гом употребил древнееврейское слово "берешить", которое переведено на русский как "в начале". Точнее это слово должно пере­водиться "в начале времени", то есть в тот момент, когда начало существовать само время (до этого была только вечность).

"В начале" был Большой взрыв. Мож­но предположить, что взорвалось вещество, имевшее объем меньше спичечного короб­ка. Плотность этого вещества была неверо­ятно велика — ведь из него впоследствии образовалась вся Вселенная.

Можем ли мы знать, что же происхо­дило в момент Большого взрыва и сразу пос­ле него? Хотя это кажется и невероятным, но можем. Правда, самый первый период после взрыва, длившийся всего около одной стотысячной доли секунды, наименее ясен. Но после этого пе­риода сценарий творения Вселенной просматривается доволь­но уверенно.

Отсчет времени эволюции Вселенной начался от момента Большого взрыва. До взрыва вещество имело не только колос­сальную плотность, но и очень большую температуру. Она до­стигала десяти миллиардов градусов. В результате взрыва это вещество стало расширяться, его плотность постепенно умень­шалась. Менялась, естественно, и его температура. А это зна­чит, что менялись и процессы, протекавшие в пределах все бо­лее и более расширяющейся Вселенной.

Космофизики выделяют несколько периодов в эволюции Вселенной после Большого взрыва. Каждый период характе­ризуется определенными процессами. Наиболее важные собы­тия, от которых зависит вся последующая судьба Вселенной, произошли в первоначальный период, который длился всего одну секунду. Что происходило в этот период?

В начале был свет. Вселенная родилась из света. ("И ска­зал Бог: да будет свет; и стал свет"). Свет (фотоны) рождается при взаимодействии элементарных частиц. Фотон рождается при взаимодействии частицы и античастицы. Частицы при этом исчезают (аннигилируют), и появляются фотоны. Процесс про­текает в два этапа. Вначале тяжелые частицы и античастицы аннигилируют и в результате возникают протоны, нейтроны, электроны и античастицы, нейтрино и антинейтрино. Эти про­цессы начинаются в том случае, если температура меньше 1028 К. Сами же тяжелые частицы (иксбозоны и их античастицы) возникают (рождаются) из физического вакуума, в котором они имеются, но в "виртуальном" (скрытом) состоянии. Таким об­разом, можно сказать, что Вселенная создавалась из вакуума, то есть из ничего. Физики, правда, не считают, что вакуум это ничто, поскольку из вакуума могут рождаться при определен­ных условиях частицы. Другими словами, физический вакуум и пустота это не одно и то же.

Для нас важно, что вначале был свет. Критерием здесь служит энергия. Энергия частицы или античастицы определя­ется ее массой, умноженной на квадрат скорости света (форму­ла А.Эйнштейна Е = mc2). Энергия фотона определяется его частотой. Массы покоя фотон не имеет. Поэтому мы должны сравнивать энергию всех фотонов с энергией всех частиц. Ре­зультаты этого сравнения говорят в пользу света, фотонов. Ока­зывается, что в этом первом периоде эволюции Вселенной на один миллиард фотонов приходилась только одна частица (про­тон). Поэтому можно считать, что вещество Вселенной в то время представляло собой свет (почти свет). Это состояние ве­щества, совершенно необычное состояние, называют фотонной плазмой, а сам первый период творения Вселенной — эрой фотонной плазмы. В эту эру масса излучения (рассчитанная по его энергии) значительно превосходила массу вещества (час­тиц).

Очень принципиально, что хотя свет по количеству фото­нов доминировал над частицами, тем не менее он (свет) нахо­дился в плену у частиц. Он не мог выбраться за пределы объе­ма, занятого частицами. Хотя частиц было в миллиард раз мень­ше, чем фотонов, они непрерывно поглощали фотоны. При этом, правда, они излучали новые фотоны. Так частицы эф­фективно препятствовали продвижению света за пределы ог­раниченного веществом объема. Таким образом, в этот период свет (фотоны) оказывается запертым в пределах вещества.

По мере расширения вещества уменьшалась его темпера­тура. Значит, менялись и условия рождения частиц и античас­тиц с разными массами. Чем ниже становилась температура, тем менее вероятным становилось образование тяжелых час­тиц, таких как протоны и антипротоны. Для их рождения не хватало энергии взаимодействующих частиц.

Среди частиц имелись нейтрино и антинейтрино. При вы­сокой температуре эти пары частиц аннигилируя превращаются в электроны и позитроны. Заметим, что позитрон является анти­частицей электрона. Затем пара частиц электрон—позитрон при аннигиляции превращается снова в нейтрино и антиней­трино. Это своего рода качели. Но для того, чтобы они "рабо­тали", нужна высокая температура вещества. Если температу­ра недостаточно высока, то нейтрино сможет без взаимодейст­вия выйти из этого объема. Такие условия создались в расши­ряющемся веществе спустя 0,3 секунды после Большого взры­ва. После этого момента расширяющееся вещество, которое содержало и электроны и позитроны, стало прозрачным для нейтрино. Нейтрино стало неуловимым, поскольку при обыч­ных температурах оно очень слабо взаимодействует с вещест­вом. Так, нейтрино спокойно пронизывает Землю, Солнце, дру­гие звезды, практически не замечая их. Те нейтрино и антиней­трино, которые вырвались из плена высокотемпературного вещества спустя после Большого взрыва, гуляют во Вселенной до сих пор. Они не растеряли своей энергии, поскольку не всту­пают во взаимодействие ни с кем. Точнее, "почти ни с кем". Кстати, их количество примерно такое же, что и количество фотонов, которые образовались в те времена. Но фотоны вы­рвались из плена значительно позднее, чем нейтрино. Кстати, вездесущие и неуловимые нейтрино содержат в себе информа­цию обо всей Вселенной и о тех событиях, которые происходи­ли сразу после Большого взрыва. Ученые стремятся поймать нейтрино и получить эту информацию. На наших глазах за­рождается нейтринная астрономия. Ученые надеются, что ней­трино, рождающееся вблизи центра Солнца в процессе ядер­ных реакций, принесут нам информацию об условиях, которые там имеются, и о том, что там происходит.

По истечении 10 секунд после Большого взрыва темпера­тура вещества уменьшилась до нескольких миллиардов граду­сов. Поэтому изменилось соотношение между количеством час­тиц с разной массой. При более высокой температуре, то есть до этого момента времени, электроны и позитроны рождались при столкновениях энергичных частиц. Сейчас же это стало не­возможным из-за нехватки энергии взаимодействующих час­тиц. Поэтому электронов и позитронов становится меньше — они аннигилируют и рождают фотоны. А новые электроны и позитроны не возникают. Поэтому момент в 10 секунд (как и момент в 0,3 секунды) является критическим.

Ученые считают, что свойства Вселенной, в частности ее химический состав, определяются теми событиями, которые происходили в первые пять минут после Большого взрыва. В эти минуты происходили определяющие дальнейшую эволю­цию Вселенной процессы ядерных превращений.

Если температура выше 10 миллиардов градусов, то час­тицы вещества не могут быть нейтральными (атомами или мо­лекулами). В этих условиях даже сложные атомные ядра не могут существовать. Причиной тому большая скорость движе­ния частиц (чем выше температура, тем с большей скоростью частицы движутся). При большой плотности частиц и большой скорости их движения происходят непрерывные их столкнове­ния друг с другом, в результате которых они разрушаются, рас­падаются на части. По этой причине сложные частицы в этих условиях существовать не могут. Поэтому вещества в таких ус­ловиях состоят из самых простых ядер — ядер водорода, т.е. протонов. Имеются также нейтроны. Кроме протонов и ней­тронов разлетающееся после Большого взрыва вещество содер­жало энергичные электроны, позитроны, нейтрино и антиней­трино. Если температура вещества очень высокая (более ста миллиардов градусов), то протоны под действием высокоэнер­гичных частиц превращаются в нейтроны, а нейтроны, в свою очередь, превращаются в протоны. Поэтому в этих условиях протонов и нейтронов имеется примерно равное количество. Но если температура понижается, этот баланс нарушается, по­скольку образование протонов более выгодно энергетически, так как масса протона меньше массы нейтрона. Поскольку при дефиците энергии ее надо расходовать экономнее, то более ве­роятно образование протонов. Однако уменьшение числа ней­тронов относительно числа протонов останавливается тогда, когда прекращается реакция превращения нейтронов в прото­ны. Это наступает при определенном понижении температуры, которое достигается уже после первых секунд расширения. Да­лее соотношение между количеством нейтронов и протонов ос­тается неизменным: нейтроны составляют примерно 15 процен­тов от количества протонов (а точнее, от всех тяжелых частиц). В это время атомных ядер более сложных, чем ядро водоро­да — протон, еще нет. Они "были бы рады" образоваться, но их моментально разбивают энергичные частицы. Чем выше тем­пература, тем больше энергия, а значит и возможности этих частиц. Когда же температура уменьшится до одного милли­арда градусов, эти частицы уже не способны помешать обра­зованию атомных ядер. Протоны получают возможность со­единяться с нейтронами. Ведь ядра всех химических элементов состоят из протонов и нейтронов. Так образуются ядра дейте­рия (один протон и один нейтрон), ядра трития (один протон и два нейтрона), ядра гелия (два протона и два нейтрона). Обра­зуется также некоторое количество ядер более тяжелых элемен­тов (лития и изотопов дейтерия и гелия-3).

В продолжение пяти минут после Большого взрыва ядра более тяжелых элементов не образуются. В принципе возмож­но образование сложных ядер с атомными массами 8 и 5 при столкновении ядер гелия-4 с себе подобным или же с нейтрона­ми и протонами. Но эти ядра являются неустойчивыми. Поэ­тому ядер более тяжелых элементов, чем литий, в этот период эволюции не образуется.

По истечении пяти минут синтез элементов прекращает­ся, поскольку температура падает ниже миллиарда градусов. При этом энергии частиц уже недостаточно для того, чтобы вызвать такой синтез. Элементы тяжелее лития образуются уже в звездах. Таким образом, с прекращением ядерных реакций соотношение между числом нейтронов и протонов остается по­стоянным (15 процентов нейтронов и 95 процентов протонов). Но в ядрах гелия на каждый нейтрон приходится один протон. Поэтому ядер гелия имеется 30 процентов, а ядер водорода (то есть протонов) 70 процентов. Такое соотношение установилось к концу пятиминутного периода после Большого взрыва. Даже в наше время гелия во Вселенной действительно имеется при­мерно 30 процентов. "Примерно" потому, что небольшое его количество образуется в звездах. Водорода в наше время уже не 70 процентов, поскольку произошел синтез в звездах (зна­чительно позже).

Мы говорили о том, что фотоны (свет) находились в пле­ну у вещества (частиц) некоторое время после Большого взры­ва. Так вот, этот плен света продолжался примерно 300 тысяч лет. Далее события развивались следующим образом. Когда температура вещества понижается до четырех тысяч градусов, наступает очередной скачок в характере процессов: начинают образовываться нейтральные атомы. Значит, плазма переста­ет быть полностью ионизованной, число нейтральных атомов увеличивается. Они образуются в результате обрастания имею­щихся в плазме ядер водорода и гелия электронами. Так появ­ляются в расширяющемся веществе водород и гелий. По мере того, как плазма стала превращаться в нейтральный газ, она становилась прозрачной для фотонов. Стало возможным от­деление света от плазмы. Это был тот момент, который толко­ватели Библии связывают со словами: "И отделил Бог свет от тьмы" (Быт. 1,4).

Таким образом, спустя триста тысяч лет после Большого взрыва фотоны вырвались из столь длительного плена и устре­мились в самые удаленные уголки Вселенной. Эти качествен­ные изменения имели далеко идущие последствия. Главное из них, видимо, в том, что однородная до этого момента плазма превращается теперь в нейтральный газ и получает возмож­ность собираться в комки. Только благодаря этому стало воз­можным образование отдельных небесных тел (звезд, планет и т.д.). Почему это не могло происходить в плазме? Потому, что образованный комок плазмы запирал внутри себя и фотоны, которые оказывали изнутри огромное давление и разбивали комок. Значит, комок не мог расти дальше, он разрушался. Поэ­тому плазма и оставалась однородной, а точнее, поддержива­лась давлением фотонов. Но, когда фотоны, как пар из лоп­нувшего шара, были выпущены из плена, ничто больше не пре­пятствовало нейтральному веществу собираться в комки.

Если вещество равномерно распределено в пределах шара, то под действием сил притяжения все вещество с течением вре­мени соберется в центре шара. Если это вещество равномерно распределено в бесконечном пространстве, то под действием сил притяжения основная часть вещества соберется в комки. Этот процесс называется гравитационной неустойчивостью.

Если бы это произошло с самого начала после Большого взрыва, когда расширяющееся вещество имело огромную плот­ность, то и образовавшиеся при этом комки имели бы очень большую плотность. Но такой большой плотности вещества нигде во Вселенной не наблюдается. Поэтому можно заклю­чить, что собирание вещества в комки происходило позднее, как это описано выше.

Загрузка...