Фирма «Хейнкель» начала работать над самолетами с турбореактивными двигателями (рис. 1) и над самими двигателями в 1937 г.
Двигатель, разработанный фирмой «Хейнкель», был одним из первых опытных турбореактивных двигателей в Германии. Одновременно работы по турбореактивным двигателям велись на моторостроительных заводах фирм «Юнкере» и BMW. Практически результаты опытных работ, позволившие начать серийный выпуск турбореактивных двигателей, были получены в конце 1943 г. фирмой «Юнкере», начавшей в 1944 г. выпуск двигателей типа Jumo-004. Несколько позже заводами BMW был выпущен турбореактивный двигатель BMW-003. В этом двигателе нашли отражение как первоначальные работы, так и более поздний опыт фирмы «Юнкере». По принципу работы двигатель BMW-003 подобен двигателю Jumo-004, хотя имеются и некоторые конструктивные отличия. Так, например, различно количество подающих горючее форсунок, расположенных по окружности камеры сгорания. У Jumo-004 таких форсунок 6, у BMW-003 их 16. Различна конфигурация заднего выдвижного устройства, регулирующего тягу двигателя: в Jumo-004 оно выполнено в виде конуса с острой вершиной, в BMW-003 конус усечен.
Двигатель Jumo-004 устанавливался на двухмоторных истребителях Мессершмитт Ме-262, двигатель BMW-003 — на одномоторных истребителях Хейнкель Не-162 и четырехмоторных бомбардировщиках Арадо Аг-234.
Турбореактивный двигатель BMW-003 представляет собой сигарообразное тело с цилиндрической вставкой общей длиной 3300 мм и диаметром 683 мм (рис. 2).
С учетом установленных на наружной поверхности агрегатов габаритная высота двигателя равна 753 мм. Вес 730 кг. Конструктивно двигатель разделен на четыре части:
1) холодная часть двигателя, представляющая собой входной диффузор, выполненный из листового дюралюминия; диаметр входного отверстия равен 400 мм;
2) семиступенчатый нагнетатель с рабочими колесами увеличивающегося от 350 до 400 мм диаметра, выполненными из алюминиевого литья;
3) камера сгорания, выполненная из жароупорной стали;
4) газовая турбина и выхлопное сопло с выдвижным конусом, выполненные из листовой жароупорной стали.
Выдвижной конус регулирует режим работы двигателя на земле и в воздухе.
В зависимости от положения конуса увеличивается или уменьшается кольцевое выходное отверстие сопла. Чем больше выдвинут конус, тем меньше выходное отверстие и тем больше реактивная тяга. Конус имеет четыре фиксированных положения, в которые он устанавливается летчиком в зависимости от требуемого режима работы двигателя.
1. Положение А соответствует максимальному открытию кольцевого выходного отверстия. При этом положении производится запуск двигателя.
2. Положение S (1/2 полного открытия) соответствует открытию кольцевого отверстия при старте и полете на скоростях ниже 700 км/ч и на высотах меньше 8000 м.
3. Положение F (1/3 полного открытия) соответствует минимальному открытию кольцевого отверстия, при котором производится полет на скоростях выше 700 км/ч и на высотах, меньших 8000 м.
4. Положение Н (2/3 полного открытия), среднее между А и S, соответствует полетам на высотах выше 8000 м.
Перевод конуса из одного положения в другое производится электромотором, когда летчик ставит указатель управления конусом в соответствующее положение.
В паспортах двигателя указывается, на сколько должен быть выдвинут конус при положении S. У различных двигателей эта величина колеблется в пределах от 315 до 325 мм.
Ниже приводятся данные паспортов двух двигателей, предназначавшихся для установки на самолете Не-162.
Заводской номер двигателя | 394-642 | 394-256 |
Дата испытаний | 18/11 1945 г. | 31/111 1945 г. |
Температура наружного воздуха. °С | +1 | +11 |
Давление воздуха, мм рт. ст. | 770 | 756 |
Число оборотов в минуту | 9520 | 9500 |
Тяга, кг | 864 | 820 |
Давление горючего, кг/см² | 67 | 56 |
Температура выходящего | 570 | 545 |
газа. °С | ||
Положение, мм | 323 | 316 |
В этих пределах колеблются основные данные турбореактивных двигателей BMW-003, и для расчетов принимается, что тяга равна 800 кг при 9500 об/мин и положении конуса S, равном 320 мм.
Необходимо отметить, что давление горючего при подаче в камеру сгорания зависит от качества горючего. Для хороших сортов бензина достаточно 25–30 кг/см². Более низкие сорта горючего, как, например, дизельные топлива или соляровое масло, на котором обычно эксплуатируются эти двигатели, требуют более высоких давлений подачи — от 50 до 70 кг/см². Для смазки применяется смесь немецких масел 50 % «Rotring» и 50 % «Fliegdriick6l». Масла подаются под давлением 6–7 атм.
Запуск двигателя производится от маленького двухтактного моторчика DKW, который запускается летчиком нажатием педали стартера. При достижении 1200 об/мин через форсунки двигателя впрыскивается горючее (пусковой моторчик работает на высокооктановом бензине типа В-4) и одновременно включается зажигание нажатием кнопки на рычаге сектора, регулирующего подачу горючего. Постепенным увеличением подачи горючего обороты доводятся до 3500 об/мин, и на этом режиме двигатель работает в течение 1–1,5 минуты.
При выдвижении конуса в положение S и дальнейшем увеличении подачи горючего обороты доводятся до 9500 об/мин, что соответствует максимальной тяге. При этих оборотах производятся взлет и полет. В полете число оборотов может изменяться в пределах от 6500 до 9500 об/мин. При 6500 об/мин тяга практически равна нулю, и поэтому режим при 6500 об/мин называется «холостым ходом» в воздухе.
В полете особенно важно наряду с показаниями счетчика оборотов наблюдать за температурой деталей, расположенных у выхода из двигателя. При запуске их температура может доходить до 750 °C; в полете она падает и нормально находится в пределах 450–620 °C. На некоторых режимах и в зависимости от температуры окружающего воздуха она может опуститься до 200 °C. Таким образом, нормальный полет может происходить в широком диапазоне температур нагретых деталей от 200 до 620 °C.
Самолет Не-162 представляет собой свободнонесущий моноплан с высокорасположенным крылом (см. рис. 2). Двигатель установлен на крыле, сзади пилота, стабилизатор имеет большое поперечное V.
Фюзеляж — металлический, типа монокок, состоящий из трех частей: основной средней части с кабиной летчика, хвостовой части с оперением и носового обтекателя. Внизу по бокам фюзеляжа сделаны люки для уборки основных колес шасси; спереди, внизу имеется вырез для переднего колеса. Фонарь кабины летчика целиком отштампован из плексигласа, откидывается вверх-назад и при аварии может быть сброшен.
Крыло — целиком деревянное, неразъемное, однолонжеронной конструкции. Лонжерон двутаврового сечения, полки выклеены из облагороженной прессованной древесины, а стенка фанерная, переменной толщины. Весь каркас крыла собран на клею. Обшивка фанерная, толщиной 1,5–2 мм, крепится к каркасу также на клею. Фанерная обшивка хорошо прошпатлевана и покрыта плотным слоем лака. Концевые, отогнутые вниз части крыльев — металлические, крепятся к крылу шурупами.
Хвостовое оперение. Стабилизатор с большим поперечным V наглухо крепится к хвостовой части фюзеляжа. Стабилизатор и рули высоты имеют металлический каркас с металлической же обшивкой. Кили и рули направления деревянные. Ко всем органам управления (элеронам, рулям высоты и направления) приклепаны неподвижные флетнеры в виде дюралевых пластинок размером 200x35 мм.
Самолет вооружен двумя пушками калибра 20 мм, стреляющими вперед, с запасом снарядов по 120 штук на каждую.
Аэронавигационное оборудование обычное. Установлены следующие моторные приборы:
1) счетчик оборотов турбины, имеющий внутреннюю шкалу от 1000 до 3000 об/мин и наружную шкалу от 3000 до 10 000 об/мин;
2) показатель температуры горячих деталей двигателя, разградуированный от 200 до 800 °C;
3) манометр давления горючего со шкалой от 20 до 100 атм;
4) манометр давления масла со шкалой от 1 до 9 атм;
5) дифференциальный манометр.
Кроме приборов, в кабине установлены сектор крана подачи горючего с кнопкой для включения зажигания и специальный переключатель для установки регулирующего конуса в соответствующее положение.
Особый интерес представляет крепление кресла пилота. В случае необходимости покинуть самолет в воздухе летчик взрывает пиропатрон, заложенный в трубе, крепящей кресло, и силой взрыва выбрасывается вместе с креслом из самолета на высоту 10–15 м. После этого, находясь в воздухе, пилот освобождается от кресла, и одновременно открывается парашют. Такое приспособление сделано для того, чтобы преодолеть сопротивление воздуха при выбрасывании на больших скоростях порядка 800–900 км/ч.
На заводе Хейнкеля в Ростоке установлен специальный стенд для тренировки летчиков на выбрасывание с креслом. Кресло летчика установлено так, что оно может по направляющим свободно подниматься вверх и на стальной ленте по тем же направляющим спускаться вниз. Тренирующийся летчик садится внизу в кресло, прочно привязывается и рывком за специальный трос производит взрыв пиропатрона, заложенного в трубу, крепящую кресло; силой взрыва летчик подбрасывается вверх на высоту 10–12 м. Кратковременные перегрузки при подбрасывании достигают 14–15 g.
Опытный самолет Не-162 был построен в течение декабря 1944 г. и января 1945 г. 12 января 1945 г. самолет прошел заводские испытания и был принят на вооружение немецкой армии. Одновременно велась подготовка производства массового выпуска этого типа самолета. Намечался выпуск 1000 самолетов в месяц. В этих целях было организовано изготовление отдельных агрегатов и деталей самолета в 700 различных пунктах, разбросанных по всей территории Германии, Австрии, Чехословакии и других оккупированных в то время немцами стран.
На выпуск Не-162 был переключен самолетостроительный завод Юнкерса в Дессау. Изготовление деревянных крыльев было организовано в Тироле поблизости от сырьевых баз.
Задача организации массового выпуска самолетов Не-162 путем изготовления отдельных деталей и агрегатов в различных производственных точках немцами не была решена вследствие быстрого наступления Красной армии и армий союзников. Вместе с тем им удалось разработать и ввести в практику технологию, позволявшую производить сборку узлов и агрегатов в местах, удаленных от заготовительных цехов на несколько десятков километров. В сборочных агрегатных цехах отсутствует оборудование, позволяющее изготовить деталь взамен неподанной или изготовленной не по размеру. Это объясняется высокой точностью всех изготовляемых деталей и четким комплектованием. Для достижения точности широко применялась штамповка. На заводе Хейнкеля в Ростоке единственно уцелевшим цехом основной территории завода был заготовительно-штамповочный цех с мастерскими деревянных штампов и приспособлений. Заготовительный цех оборудован высокопроизводительными тяжелыми прессами: в нем имелось шесть гидравлических прессов мощностью от 500 до 5000 т, шесть прессов двойного действия с пневматическими прижимами по 300–500 т и четыре обтяжных пресса «Шулер».
Большая часть вытяжных штампов — деревянные, но попадаются и литые штампы из отходов цветного металла, которыми изготавливаются габаритные детали, как, например, крышка капотов и зализы.
Для сокращения производственных циклов и экономии лакокрасочных покрытий детали из листового дюраля ничем не покрывались. Окрашивается лишь готовый самолет после испытаний. По этому пути пошли почти все авиационные заводы Германии.
Размах крыла, м 7,5
Длина самолета, м 8,25
Площадь, м²:
крыла 10,0
элеронов 0,75
щитков 1,58
стабилизатора 1,30
рулей высоты 0,70
килей 1,13
рулей направления 0,72
Вес, кг;
планера 800
двигателя 730
пустого самолета 1530
горючего и масла 700
пилота с парашютом 100
вооружения и оборудования 220
боезапаса 50
полной нагрузки 1070
Полетный вес, кг 2600
Нагрузка на 1 м² крыла, кг 260
Скорость, км/ч:
максимальная при 9500 об/мин на высоте 8000 м 850
взлетная (щитки опущены на 25*) 185-200
посадочная (щитки опущены на 45") 165
Продолжительность полета (при 6500–9500 об/мин), ч 0,5–1,5
Взлетная дистанция, м… 650