Двадцатые годы, самое их начало, впечатляют, пожалуй, не меньше, чем величественный 25-й год, от которого отсчитывает квантовая механика свои юбилеи. Двадцатые годы — это время подведения итогов, оценки степени понимания накопившихся экспериментальных данных. Результаты оказались тревожными. Определенными были лишь две вещи: первая — это то, что экспериментальные данные безусловно подтверждали реальность кванта, и вторая — привычные методы классической физики оказались абсолютно неприспособленными для использования новой величины.
Стало совершенно ясно, что созданные к этому времени квантовые теории требуют серьезного пересмотра. Накал в физическом мире был таков, что, как взрыв, появилась квантовая механика, появилась, как по взмаху волшебной палочки. Она родилась многоликой. Почти одновременно тремя совершенно разными людьми в разных городах, — Гейзенбергом в Геттингене, Дираком в Кембридже и Шредингером в Цюрихе, — были созданы совершенно различные на первый взгляд теории, составляющие сегодня суть квантовой механики и всей современной физики. Но для этого потребовалось много, потребовались героические усилия физиков старшего поколения и неудержимая фантазия поколения ровесников самого кванта.
Это поколение появилось на свет и росло в атмосфере постоянных открытий во всех сферах деятельности человека. С этим поколением родились аэроплан и радио. С этим поколением появились прививки от дифтерита, витамины и способ определения группы крови, появились пептиды и первая гипотеза строения белков, взрывчатые вещества и удобрения. Выставочные залы преподносили сюрпризы: художники открывали новое искусство. И в этом шквале нового, принимая новизну и чудеса за норму и обыденность, росло поколение, родившееся с веком. Росло в обстановке, когда еще не успело пройти удивление первым аэропланом и звучало эхо пророчества братьев Райт после их первого полета о том, что «еще тысячу лет человек не будет летать», а уже развивалось мощное самолетостроение — в первую мировую войну шли воздушные бои, а перед самой войной поручик Нестеров в России крутанул самолет в мертвую петлю. Дешевые автомобильчики бегали по мощенным булыжником дорогам Европы. Скромная лаборатория Маркони превратилась в богатую фирму, осуществившую в самом начале века радиосвязь через Атлантический океан.
В физику это поколение пришло в то время, когда большие надежды сменялись горьким разочарованием, появлялись новые надежды и сменялись новыми разочарованиями. Бесспорными были лишь экспериментальные факты, бесспорными и ошеломляющими. Что же касается их толкования, то очевидным было только то, что квант действия играет в физике фундаментальную роль. Но все теории с использованием кванта, на первый взгляд удачные, давали в лучшем случае качественное согласие, а при появлении новых экспериментальных данных оказывались и вовсе несостоятельными. И физики были вынуждены вводить в теорию искусственные ограничения и дополнения, каждый раз новые, каждый раз с большим трудом подгоняя теорию к эксперименту. Все понимали, что метод подгонок — явление временное и для получения последовательной теории нужны кардинальные перемены. Это было время упорного поиска новых путей. Затрачивались огромные усилия для выхода из создавшихся затруднений и противоречий. Физика была похожа на запутанный клубок шерсти, из которого торчали несколько концов, и стоило умело потянуть за какой-нибудь конец, как тот, вначале поддавшись, дальше только сильнее затягивал и запутывал сердцевину. По словам Нильса Бора, вся ситуация в физике оставляла у него тогда чувство «грусти и безнадежности» [12, с. 845]. Новое поколение пришло в физику без чувства грусти и безнадежности. Ему не было дела до тревог и опасений своих учителей. Они пришли в науку, как рыцари без страха и упрека. Они были смелыми и веселыми, а если впадали в отчаяние, то оно было, как у детей, очень глубоким и очень коротким.
Подробный рассказ о том узком интервале времени, который предшествовал открытию квантовой механики, всего лишь об интервале с 1922 до 1925 г., — предмет отдельной книги. А сейчас, только чтобы прикоснуться к тому времени, вспомним историю с открытием спина. Тем более, что главные действующие лица в этой истории — Паули, Уленбек, Гаудсмит, Крониг — ровесники кванта и даже моложе его.
В конце прошлого века Лоренц предсказал расщепление спектральных линий в магнитном поле. В 1896 г. Питер Зееман обнаружил это явление экспериментально. В 97-м Лоренц построил теорию эффекта Зеемана. В следующем же, 98-м, году Зееман обнаружил иное и совершенно неожиданное поведение спектральных линий в магнитном поле. Это явление было названо аномальным эффектом Зеемана, и классической теорией Лоренца оно не описывалось. Но все вместе было столь впечатляющим, что в 1902 г. Лоренц и Зееман получили Нобелевскую премию. Это была вторая по счету Нобелевская премия по физике. Первая премия была присуждена Рентгену в 1901 г. И только в 1945 г. Паули получит Нобелевскую премию за работу более чем двадцатилетней давности — за открытие принципа, названного принципом Паули и введенного им для объяснения аномального эффекта Зеемана.
Вольфганг Паули (1900 г. рождения) — ученик Зоммерфельда. Ему было 19 лет, когда он впервые слушал лекцию Эйнштейна о теории относительности. Сразу после лекции Паули взял слово и сказал: «Знаете ли, то, что рассказывал нам господин Эйнштейн, вовсе не так уж глупо» [10, с. 142]. В какой-то книжке (помню только, что автор не физик) я прочитала фразу о том, что физики очень смелые люди, потому среди физиков много альпинистов и подводников, а может быть, горнолыжников. И получалось у этого автора так, что, если вы не можете взять семитысячник или спуститься напрямую с Кохты, не выйдет из вас настоящего физика. Паули не был ни альпинистом, ни подводником и в свои 20 лет был уже тучным и необыкновенно неуклюжим, настолько неуклюжим, что все, кто писал о нем, не могли обойтись без анекдотов по этому поводу. В лабораториях его боялись как огня. Самый типичный пример — это известная история о том, как однажды в Геттингене, в Институте Джеймса Франка, произошел страшный взрыв. Причину взрыва установить не могли. А потом все объяснилось просто. Оказалось, что в момент взрыва через Геттинген проходил поезд, в котором ехал Паули. Поезд сделал короткую остановку. Несколько минут присутствия Паули в миле от института было достаточно для катастрофы. Показательно знакомство знаменитого Эренфеста с молодым Паули. После первых же минут беседы мягкий и деликатный Эренфест не удержался и сказал, что печатные статьи Паули понравились ему много больше, чем он сам. На что Паули немедленно ответил, что у него возникло прямо противоположное чувство.
Итак, на исходе 1924 г. Паули объяснил аномальный эффект Зеемана, сформулировав не имеющий никаких аналогов в классической физике и казавшийся абсолютно загадочным принцип, так называемый «принцип запрета». В силу этого принципа в атоме не может существовать двух и более электронов в одном и том же энергетическом состоянии. В существующей к этому времени теории энергетическое состояние электрона описывалось тремя «квантовыми числами», соответствующими трем физическим характеристикам электрона: энергии, орбитальному моменту и проекции момента на направление магнитного поля. Все три величины квантовались. Паули к этим трем квантовым числам добавляет загадочное четвертое число, описывающее «своеобразную, классически не описываемую двузначность квантово-механических свойств излучающего электрона» [13, с. 373]. «Излучающий», или оптический электрон, — это последний электрон на внешней оболочке атома. У одновалентных веществ (водород и щелочные металлы) на внешней оболочке один-единственный электрон. Для всех остальных элементов именно количество этих внешних, оптических электронов или их недостающее число и определяет валентность вещества (так они и расположены по столбцам таблицы Менделеева).
Так вот, к этому времени физики пришли к однозначному выводу, что, скажем, для одновалентных металлов угловой момент «атомного остатка», т. е. ядра и нейтральной оболочки без внешнего электрона, равен ½. А Паули, никаким образом не принимая этот факт во внимание и выражаясь столь туманно о «своеобразной, классически не описываемой двузначности» электрона, делает еще один очень важный вывод о том, что угловой момент атомного остатка обусловлен только внешними электронами. Казалось, этого было достаточно, чтобы сделать следующий, абсолютно очевидный вывод о том, что электрон обладает собственным моментом, равным ½. Тогда, во-первых, становится понятным половинчатый момент атомного остатка, во-вторых, оправдывается наличие четвертого квантового числа, соответствующего этому самому собственному моменту электрона, и, наконец, становится понятным «принцип запрета». Последнее, пожалуй, следует пояснить.
Дело в том, что в модели Бора в атоме на одной оболочке могут находиться два и больше электронов с одинаковыми квантовыми числами, а как же тогда срабатывает принцип Паули, необходимый и введенный для объяснения аномального эффекта Зеемана? И тут очевидно, что достаточно приписать электрону собственный момент и соответствующее ему четвертое квантовое число, и тогда два электрона вполне могут позволить себе иметь все квантовые числа одинаковыми, кроме последнего: собственные моменты ½ должны быть направлены в противоположные стороны. Этот самый собственный момент электрона ½, который называется спином, отражая тот факт, что электрон вертится вокруг собственной оси, действительно есть у электрона, и ни одно явление в микромире невозможно описать без него. Но ввел понятие спина не Паули. В связи с этим в любом воспоминании о Паули можно найти недоумение: так близок был Паули к спину и так его просмотрел! Но Паули не просто просмотрел спин.
Драматическая история со спином не кончается на том, что Паули его просмотрел. Свои соображения по поводу принципа запрета, фактически содержание будущей статьи, Паули изложил в письме известному спектроскописту Ланде. В то самое время, когда Ланде получил письмо от Паули, к нему приехал совсем молодой человек из Америки Ральф де Крониг, который вспоминает: «7 января 1925 г., когда мне было 20 лет от роду и был я еще очень неопытен, прибыл я в маленький живописный немецкий университетский город Тюбинген и остановился в отеле „У золотого быка“. Я прибыл в качестве сотрудника Колумбийского университета для свидания с Ланде и Герлахом, которые возглавляли соответственно кафедры теоретической и экспериментальной физики. В Институте физики меня любезно принял Ланде, заметив, что я прибыл очень кстати, так как на следующий день должен приехать Паули. В самом деле, Паули написал ему длинное и очень интересное письмо, которое Ланде дал мне прочитать… В моих глазах Паули означал так много, что, ожидая встречи с ним, я жадно вчитывался в письмо, которое Ланде показал мне. В этом письме фактически содержалось изложение принципа запрета в ясном и критическом стиле, столь характерном для его автора… Письмо Паули произвело на меня огромное впечатление, и, естественно, мне захотелось осмыслить тот факт, что каждый отдельный электрон в атоме должен описываться квантовыми числами, известными из спектров атомов щелочных металлов, в частности открытыми там двумя моментами количества движения l и s = ½. Очевидно, теперь уже нельзя было приписывать s остову, и мне сразу пришла мысль, что s можно рассматривать как собственный момент количества движения электрона. На языке моделей, который до создания квантовой механики был единственной основой для обсуждения, этот собственный момент электрона можно наглядно изобразить только как вращение электрона вокруг своей оси. Правда, такое представление сопряжено с рядом трудностей. Однако эта идея была заманчивой, и к вечеру того же дня под влиянием прочитанного письма я получил формулу для так называемых релятивистских дублетов» [14, с. 15].
На следующий день приехал Паули и состоялась дискуссия. Крониг получил полную отповедь. В своей обычной резкой форме Паули объявил Кронигу, что его идея о спине электрона чистый вздор, что математическая точка не может вокруг себя вертеться, она должна чем-то быть. Вскоре Крониг поехал в Копенгаген и рассказал о своей идее Бору и Гейзенбергу. Копенгагенская школа тоже решительно отвергла идею о вращающемся электроне. Мнение прославленных физиков сыграло свою роль, и Крониг не опубликовал свою работу. Осенью того же 1925 г. молодые сотрудники Эренфеста Уленбек (1900 г. рождения) и Гаудсмит (1902 г. рождения) независимо от Кронига пришли к идее вращающегося электрона. Они и назвали собственный момент электрона спином. Уленбек писал: «Гаудсмит и я пришли к этой идее, изучая статью Паули, в которой был сформулирован знаменитый принцип запрета и электрону впервые приписывались четыре квантовых числа… Это казалось столь необоснованным и дерзким, что где-то, несомненно, должна была таиться ошибка, да и Бор, Гейзенберг и Паули, наши большие авторитеты, никогда не предполагали ничего подобного. Но мы, конечно, рассказали обо всем Эренфесту… Мы с Гаудсмитом чувствовали, что, быть может, пока лучше воздержаться от каких-либо публикаций, но, когда мы сказали о своем намерении Эренфесту, он ответил: „Я уже давно отправил ваше письмо в печать, вы оба достаточно молоды, чтобы позволить себе сделать глупость“» [Там же, с. 246].
Так в историю физики авторами спина вошли Уленбек и Гаудсмит. Но ирония судьбы такова, что сейчас, когда все это ушло в историю, понятие спина неразрывно связано с именем Паули. К концу 1925 г. Нильс Бор поверил в спин. Отметим, что это произошло не без помощи Эйнштейна. Под влиянием Бора поверил в спин и Гейзенберг. А Паули оставался при своем. Он грозно предостерегал Бора и высказывал крайнее недовольство по поводу отступничества Бора и его попустительства ко всякой ереси в физике. Но скоро горячность Паули утихла — реальность спина нельзя было не признать. Как все было непросто, видно из письма Паули Кронигу (май 1925 г., в июне появится матричная механика): «Физика теперь снова зашла в тупик, во всяком случае для меня — она слишком трудна, и я предпочел бы быть комиком в кино или кем-нибудь вроде этого и не слышать ничего о физике!» [Там же, с. 34].
А ведь к этому времени было уже так много сделано! К этому времени уже были опубликованы работы де Бройля.
В начале 20-х годов одной из самых острых была проблема дуализма волна-частица. Эта проблема стояла давно. Еще в 1905 г. Эйнштейн, обращаясь, по мнению Планка, слишком вольно с гипотезой квантов, приписал свету корпускулярные свойства и объяснил таким образом явление фотоэффекта. И хотя эта работа имела заслуженный успех, физики и не думали отказываться от волновой природы света. Если бы свет не был волной, ни дифракция света, ни явление интерференции не могли бы иметь места. Ну, а объяснение фотоэффекта и связанное с этим предположение о корпускулярной природе света каждый физик понимал по-своему. Одни считали, например, что эйнштейновские кванты света не частицы, а какая-то мера энергии электромагнитного поля.
В 1922 г. американский физик Артур Комптон открыл эффект, названный его именем. При исследовании рассеяния рентгеновских лучей в парафине Комптон обнаружил, что, кроме ожидаемого эффекта, т. е. наличия рассеяния с той же длиной волны, что и падающее, имеется рассеяние с большей длиной волны. При этом оказалось, что, чем меньше длина волны падающего излучения, тем меньше доля рассеяния с неизменной длиной волны. Это явление никак нельзя было объяснить с точки зрения волновой природы излучения, согласно которой длина волны рассеянного излучения должна оставаться такой же, как длина волны падающего. Иными словами, свет при рассеянии не должен менять цвета. Так оно и есть на самом деле, пока мы имеем дело с длинами волн, сравнимыми с длинами волн видимого света. Комптон же исследовал рассеяние рентгеновских и гамма-лучей, длина волн которых в десятки и сотни тысяч раз меньше длин волн видимого света. Оказалось, при рассеянии жестких гамма-лучей (самые короткие длины волн, порядка 10–12 см) вообще не обнаруживается компонента с начальной длиной волны. Через год сам же Комптон и независимо от него Дебай развили теорию этого явления, исходя из чисто корпускулярной природы света. При этом все законы сохранения, справедливые для классической теории рассеяния двух частиц друг на друге, строго выполняются, прямо как при рассеянии двух бильярдных шаров. Необычным было лишь то, что один из «шаров» — электрон — был нормальной частицей, (так во всяком случае считалось тогда), а другой — частицей света, энергия которой определялась не массой и квадратом скорости, а постоянной Планка, умноженной на частоту. Так с открытием эффекта Комптона вопрос о двоякой природе света встал очень остро. Наступило время, когда, по выражению Брэгга, физики были вынуждены по понедельникам, средам и пятницам считать свет состоящим из частиц, а в остальные дни недели — из волн.
В том же 1923 г., когда ни эксперимент Комптона, ни его теория не вызывали сомнений у недоумевающих физиков, появилась еще более обескураживающая работа, да еще чисто теоретическая. Луи де Бройль, увлекающийся экспериментальным исследованием излучения и имеющий возможность заниматься этим в частной лаборатории своего брата, опубликовал три теоретические работы подряд. В этих работах он утверждал, что не только свет обладает двоякой природой, но и само вещество, оставаясь веществом, должно иметь волновую природу! Т. е. каждой материальной частице наряду с ее физическими свойствами — массой, размерами и т. д. — должна соответствовать своя собственная волна. Так что и электроны, и атомы, и даже молекулы могут рассматриваться как волны. Длину волны для любой частицы де Бройль определял как постоянную Планка, деленную на ее импульс. Так, если бильярдный шар считать волной, то в его длине волны, скажем, при скорости шара 1 м/с значимое число появляется через 25 нулей после запятой, т. е. длина волны бильярдного шара порядка 10–25 см.
С необычайной простотой де Бройль объяснял, почему, скажем, электрону необходимо приписать волновые свойства: «Определение стационарных движений электронов в атоме заставляет вводить целые числа, но до сих пор единственными явлениями в физике, при описании которых вводили целые числа, были явления интерференции и собственных колебаний» [15, с. 398].
Статьи де Бройля никто не принимал всерьез, а если ему случалось выступать со своими идеями на семинаре, то его доклад вызывал всеобщее веселье аудитории. Первым на них обратил серьезное внимание Эйнштейн. В 1925 г. он писал Борну: «Прочтите ее! Хотя и кажется, что ее писал сумасшедший, написана она солидно» [Там же, с. 399]. Но Борн и разбираться не стал, а его молодые сотрудники устроили на тему дебройлевских идей потешный семинар. В том же году Эйнштейн обратил внимание Эрвина Шредингера на работы де Бройля.
Шредингеру было в ту пору 38 лет, но не только возраст отличал его от молодых создателей основ современной физики, воспитанников сильных «квантовых» школ. Шредингер был «сам по себе» и ни к одной из этих школ не принадлежал. Он родился и вырос в Вене. В 1910 г. окончил Венский университет, где, кроме философских и исторических курсов, выбрал физико-математические курсы и под сильным влиянием Хазенорля, занявшего после смерти великого Больцмана его кафедру, увлекся ими. Главным увлечением и любовью Шредингера в физике были статистические методы, восходящие к фундаментальным работам Больцмана. Именно увлечением, потому что он в равной мере увлекался биологией (ему принадлежат работы по эволюции человеческого глаза), языками, поэзией (имеется томик его стихов), скульптурой (его кабинет больше походил на мастерскую скульптора, чем на кабинет академического ученого) и более всего философией. «К современной теории атома я приближался очень медленно, — писал Шредингер. — Ее внутренние противоречия звучат как пронзительные диссонансы по сравнению с чистой, неумолимо ясной последовательностью мысли Больцмана. Было время, когда я прямо-таки готов был обратиться в бегство, однако, побуждаемый Экснером и Кольраушем, нашел спасение в учении о цвете» [16, с. 39]. Именно занятия цветометрией с глубоким знанием теории колебаний в сочетании с другими «внешними» факторами привели Шредингера к волновой механике.
К этим «внешним» факторам нужно отнести главным образом, пожалуй, следующие. Это тесное общение с Германом Вейлем, который в то время заведовал кафедрой математики в Цюрихском университете и оказывал прямую помощь Шредингеру в разработке математического аппарата; затем общение и дружба с Питером Дебаем, объяснившим в 22-м году эффект Комптона, и, наконец, «щелчок по носу» [17, с. 331], который, по выражению Шредингера, он получил от Эйнштейна по поводу «тщетной попытки построить картину фазовой волны электрона на эллиптической орбите». С этим же «щелчком» Шредингер получил от Эйнштейна указание на важность работ де Бройля. Шредингера увлекли идеи де Бройля, сумасшедшие идеи человека, профессией которого была вовсе не физика, а история искусств. Об этом времени жена Шредингера вспоминает, как о самом смутном. Ее муж, такой спокойный, такой хороший семьянин, потерял покой и говорит очень странные вещи, говорит, что сделал открытие, почти такое же важное, как открытие Ньютона. Открытие это — волновая механика Шредингера — появится в 1926 г. В 1929 г. де Бройль будет удостоен Нобелевской премии. А в 1925 г., когда Шредингер только начал свою работу, Гейзенберг создал первый вариант квантовой механики — матричную механику.
В ту пору Гейзенбергу не было еще 24 лет. Как ассистент Борна он занимался расшифровкой все тех же атомных спектров. Полуклассический фундамент, на котором была построена теория Бора, оказался шатким. Объяснение спектроскопических данных оставалось на качественном уровне. Даже в простейшем случае атома водорода при строгом рассмотрении концы с концами не сходились. Все попытки Гейзенберга, основанные на боровской модели атома, оказались безуспешными. Тогда он решил отказаться от самой модели атома и вообще от каких-либо предположений о том, что происходит внутри атома, и взял за отправную точку эмпирические данные — внешние проявления движения электронов, строгие данные спектра излучения атомов. Это оказалось той «счастливой догадкой», которая позволила Гейзенбергу создать адекватный математический аппарат для описания электронов в атоме, исходя, подчеркнем еще раз, только из строгих эмпирических данных. Он получил блестящее согласие с экспериментом. Гейзенберг понял, что находится на верном пути, но одно поразительное обстоятельство обескураживало его. Символы, которыми он оперировал, вели себя странным образом, а именно: если взять произведение импульса электрона р и его координаты q, то разность qp – pq оказывалась не равной нулю. Эта разность неизменно равнялась постоянной Планка, умноженной на квадратный корень из минус единицы. Получалось, что счастливая догадка и основанная на ней стройная теория могли оказаться ничем. Эту работу Гейзенберг сделал на острове Гельголанд в Северном море, куда ему пришлось уехать из цветущего Геттингена, спасаясь от сенной лихорадки. Не очень довольный своим символическим исчислением, Гейзенберг все-таки написал статью и привез ее Максу Борну.
«…Он был моим ассистентом, очень талантливым, — писал Макс Борн, — но еще очень молодым и не очень опытным. Он даже не знал точно, что такое матрица, и, зайдя в тупик, обратился ко мне за помощью. После некоторых усилий я нашел связь между его идеями и матричным исчислением, и помню мое удивление, когда квантовое условие Гейзенберга оказалось не чем иным, как матричным уравнением qp – pq = iħ. Матричная форма квантовой механики была затем разработана мной совместно с моим учеником Иорданом» [8, с. 237–238]. Борн незамедлительно послал работу Гейзенберга в печать. В дальнейшей разработке Гейзенберг участвовал, уже будучи у Бора в Копенгагене. «Это был оживленный обмен письмами, — писал Макс Борн, — моя часть этих писем, к сожалению, была утеряна из-за политических беспорядков. Результатом явилась статья трех авторов, которая в известной степени завершила формальную сторону исследований. Прежде чем появилась эта статья, произошел первый драматический сюрприз: была опубликована статья Поля Дирака по этому же поводу. Стимул, полученный им из лекции Гейзенберга в Кембридже, привел его к результатам, сходным с нашими в Геттингене, с той разницей, что он не прибегал к помощи матричной теории математиков, а самостоятельно открыл и развил учение о таких некоммутирующих символах» [Там же, с. 306].
Поль Дирак (1902 г. рождения) в 23 года создал свой вариант квантовой механики, основанный на им самим созданном математическом формализме, в 30 лет возглавил кафедру, которую когда-то возглавлял Ньютон. В 1928 г. он напишет уравнение, которое объединит основы теории относительности и квантовой механики и положит начало квантовой теории поля, про которое сам Дирак с гордостью скажет, что это уравнение объясняет бóльшую часть физики и всю химию.
Итак, в Кембридже появился еще один вариант квантовой механики — механика Дирака. «Пока мы обсуждали этот вопрос, — писал Макс Борн, — произошло второе драматическое событие: появились знаменитые статьи Шредингера. Его мышление развивалось по совершенно иному пути, восходящему к Луи де Бройлю» [Там же]. Научный мир пришел в замешательство. Уже были созданы матричные механики в Геттингене и Кембридже, а тут появилась новая механика — полная противоположность первым двум и столь же прекрасно согласующаяся с опытом. Случилось так, что летом того самого 1926 г. Гейзенберг поехал в Мюнхен навестить родителей и попал на доклад Шредингера. «Впервые познакомившись с толкованием, которое Шредингер хотел дать своему математическому дуализму — волновой механике, я пришел в совершенное отчаяние при мысли о той путанице в понятиях, которая, по-моему, была бы внесена в атомную теорию в результате такого толкования. К сожалению, из моей попытки навести порядок в понятиях во время дискуссии ничего не получилось: я привел доводы в пользу предположения, что вследствие толкования Шредингера совершенно невозможно объяснить закон излучения Планка, но они никого не убедили, а Вильгельм Вин, профессор экспериментальной физики при Мюнхенском университете, мне довольно резко ответил, что теперь действительно будет покончено с квантовым скачком и всей атомной физикой…» [17, с. 375].
Вскоре, однако, сам Шредингер доказал полную эквивалентность волновой механики и матричной механики Гейзенберга, получивших общее название «квантовая механика» — термин, который впервые ввел в физику Макс Борн еще в 1924 г. Но Максу Борну мы обязаны гораздо большим: смысл уравнения Шредингера, так же как единственно правильный смысл знаменитой пси-функции Шредингера, которую он ввел как функцию, описывающую волну в «чистом виде» (предпосылка, оказавшаяся абсолютно неверной), был выявлен Максом Борном. В интерпретации Макса Борна пси-функция не только не является волной, но и вообще не имеет никакого физического смысла. Смысл имеет лишь квадрат волновой функции, определяющий вероятность нахождения частицы в определенном энергетическом состоянии в определенной точке пространства и времени. Вероятностная интерпретация Макса Борна, с которой Шредингер так и не согласился до конца своих дней, и составляет суть квантовой механики. Именно в этой интерпретации уравнение Шредингера оказалось тем фундаментальным уравнением физики микромира, на котором построена современная физика. Сегодня мы знаем, что все гораздо глубже. Уравнение Шредингера правит не только микромиром, оно описывает самые разные явления и в макроскопической природе.
Сейчас в любой заштатной библиотеке можно взять книгу по квантовой механике, выбирая объем книги и автора на свой собственный вкус. А тогда квантовая мудрость должна была литься из уст в уста и нужно было найти в себе мужество поверить в нее.
Мы не коснемся здесь той бури, которая долго бушевала вокруг новорожденной квантовой механики, не коснемся знаменитого спора Эйнштейна с Бором. Великий Эйнштейн, вдохнувший жизнь в новую физику, Эйнштейн, которому в большей степени, чем кому-либо из великих, мы обязаны современным положением вещей, так до конца жизни и не принял «квантовой веры».
За открытие квантовой механики Нобелевской премии были удостоены Вернер Гейзенберг в 1932 г., Эрзин Шредингер и Поль Дирак — в 1933-м.
Итак, квантовая механика была создана. Теперь нужно было ее применять.
«В конце 20-х годов отзвуки великого гносеологического взрыва, каким явилось создание теории относительности и квантовой механики, докатились до самых отдаленных уголков мира, — писал Юрий Борисович Румер в своих воспоминаниях о встречах с Эйнштейном. — Множество молодых людей самых различных способностей и степени подготовленности устремились в центры „новой квантовой веры“ — Копенгаген, Геттинген, Цюрих, Лейден, Кембридж, чтобы принять участие в этом „пиршестве фантазии и интеллекта“. Мне было 28 лет, когда я оказался летом 1929 г. в Геттингене» [18, с. 108].