В английском журнале «Физика и химия поверхности» была помещена подборка фотографий, изображающих последовательность форм, которые принимает очень тонкая коническая вольфрамовая игла, если в течение длительного времени ее выдерживать при высокой температуре.
Оказывается, что со временем на кончике иглы формируются шарики — капли.
В нашей лаборатории были получены очень похожие фотографии, но иглы, с которыми мы экспериментировали, были не из вольфрама, и вообще не из металла, а из воды. О них рассказано в очерке «Капля падает на жидкость».
Иглы вольфрама, распадающиеся на капли, очень напоминают водяные иглы
Я сравнил фотографии и поразился общности явления в жидких иглах воды и в кристаллических иглах вольфрама — самого тугоплавкого из всех металлов. Получилось очень убедительное доказательство справедливости физической идеи, согласно которой кристаллические тела, подобно жидким, могут вязко течь. То, что вязкость кристаллов несравненно более высока, чем вязкость жидкости,— обстоятельство важное, но в принципе существо дела оно не должно менять. Важно, что и кристалл и жидкость могут вязко течь и подобные по форме тела должны деформироваться, подчиняясь общим законам. Эта идея в физику вошла прочно; она, например, лежит в основе физической теории спекания кристаллических порошков, согласно которой кристаллические крупинки «сливаются», подобно капелькам жидкости.
Описано много опытов, в которых исследовалось вязкое течение кристаллов. Ученые растягивали кристаллические нити, гнули кристаллические пластинки и всякий раз убеждались в том, что при высоких температурах и под влиянием малых нагрузок кристаллы текут, подчиняясь тем же законам, что и жидкости.
А распадающиеся на капли водяные иглы очень напоминают вольфрамовые
И все же нельзя не удивиться, сопоставив фотографии вольфрамовых и водяных игл, настолько убедительно это сопоставление свидетельствует о «текучести» кристаллического тела: научный доклад в аудитории специалистов, посвященный изложению экспериментального доказательства справедливости идеи о принципиальной возможности вязкого течения кристаллов, можно было бы свести к жесту
указкой в сторону этих фотографий и к краткому рассказу об условиях, в которых они были получены.
Специально заточенные вольфрамовые иглы, которые вблизи вершины имели диаметр около 0,1 микрона, в течение нескольких часов выдерживались в электронном микроскопе при температуре 2600° С, и с помощью этого же микроскопа их профиль периодически фотографировался.
Водяные иглы возникали самопроизвольно после падения капли на поверхность воды. Диаметр такой иглы равен нескольким миллиметрам. Деформировалась она быстро, за время около сотой секунды, и поэтому различные стадии процесса снимались скоростной кинокамерой. Огромное различие в вязкости воды и вольфрама и проявляется в том, что распад соответствующих игл на капли происходит при резко отличных условиях: диаметр водяной иглы — миллиметры, время распада — сотая секунды при температуре 20° С; диаметр вольфрамовой иглы — десятая микрона, время распада — часы при температуре 2600° С.
Фотографии рассказывают об одном и том же; о том, что и вольфрамовая и водяная иглы со временем изменяют свою форму так, чтобы их поверхность уменьшалась и вместе с ней уменьшалась поверхностная энергия. Самый большой выигрыш наступил бы после превращения иглы в шар, так как из всех тел с определенным объемом минимальной поверхностью обладает именно шар. Но для превращения иглы в шар вещество иглы должно перемещаться на расстояние, приблизительно равное ее длине, что очень трудно осуществимо, а поэтому игла довольствуется меньшим выигрышем энергии: образуя перетяжки, она разбивается на много шариков-капелек. Этот выигрыш энергии более доступен, так как для распада на несколько капель вещество иглы должно переместиться на расстояние, приблизительно равное диаметру иглы, а оно существенно короче длины. Наиболее быстро этот процесс завершается в самом тонком месте иглы — у ее кончика.
Вот, пожалуй, все, что я хотел рассказать о фотографиях вольфрамовых и водяных игл и о каплях, на которые они распадаются.