В книжке о капле вполне уместен рассказ о водяном пузыре, поскольку пузырь может возникнуть из падающих на воду капель, а лопнув, обращается снова в капли.
Прежде чем рассказывать о фактах, попытаемся построить элементарную теорию разрушения пузыря, возникшего во время дождя на поверхности реки или с помощью соломинки выдутого из мыльной пены. Все знают, что, если пузырь проколоть иголкой, он исчезнет. Проще всего этот процесс описать следующим образом. В том месте, где пузырь проколот иглой, возникает отверстие. Вдоль контура этого отверстия пленка закруглится, и вследствие этого возникнет лапласовская сила, которая будет увеличивать отверстие, заставляя вещество пленки двигаться прочь от центра отверстия. Масса той части пленки, которая ранее была на месте расширяющегося отверстия, свернется в валик, обрамляющий контур отверстия и движущийся от его центра. Со временем масса этого валика будет увеличиваться, и, если не произойдет ничего иного, «сопутствующего», через некоторое время τ все тело пленки (пузыря) свернется в одну каплю радиусом r . Нужно найти формулы, которые определяют τ и r.
Введем следующие обозначения: R — радиус пузыря, h — толщина пленки, ρ — плотность жидкости.
Радиус конечной капли легко определить, исходя из следующего очевидного условия — объем жидкости в капле и в пленке пузыря одинаков:
4πR2h = 4/3πr3
Из этого условия следует:
r = (3R2h)1/3
Одна формула найдена.
Прежде чем вычислить величину τ, найдем скорость, с которой движется валик от точки прокола к точке, диаметрально противоположной которой и возникнет капля. Для упрощения расчета предположим, что пленка плоская. Учет ее изогнутости усложнил бы расчет и лишь немного уточнил результат. Исчезновение части пленки приводит к освобождению поверхностной энергии, которая, будем считать, превращается в кинетическую энергию движущегося валика. К тому моменту, когда образуется отверстие, радиус которого R1,масса валика будет равна т = πR12hρ.
Равенство кинетической энергии валика и освободившейся поверхностной энергии означает, что 1/2mυ2 =1/2π
R12hρυ2 = 2πR12α
Из записанного равенства следует выражение, определяющее скорость движения валика: υ = (4α / hρ)1/2
Очень интересный результат.
Оказалось, что, хотя со временем масса валика и увеличивается, движется он с постоянной скоростью, так как все величины, определяющие υ,— константы. Причина ясна: с ростом отверстия масса валика растет, но при этом увеличивается и количество выделяющейся поверхностной энергии. И та и другая величины с ростом R1растут по одинаковому закону ≈ R12.
Если валик совершает равномерное движение, то время, необходимое для его перемещения от места прокола до диаметрально противоположной точки, где валик сольется в каплю (а это и есть время взрыва), τ ≈ πR/υ .
Таким образом:
τ ≈ πR(hρ/4α)1/2
Итак, элементарная теория построена, найдены формулы, определяющие r и τ. Из этой теории следует, например, что если водяной пузырь имеет радиус R = 1 см, а пленка, которая его образует, имеет толщину h= 10 мк = 10-3 см, то через τ ≈ 5.10-3сек после момента прокола пузырь должен превратиться в каплю, радиус которой должен быть около 1 мм.
Теперь о фактах. Известны два великолепных опыта, с результатами которых можно сопоставить предсказания элементарной теории. Один из этих опытов был поставлен американским ученым В. Ф. Ранцем, другой ленинградским физиком М. О. Корнфельдом.
Ранц проверял, действительно ли при разрушении жидкой пленки образуется валик, который движется с постоянной скоростью. На жесткий обод он натягивал тонкую водяную пленку, прокалывал ее и с помощью чувствительной методики следил за тем, как со временем меняется радиус отверстия.
Судьба пузыря на соломинке, пробитого металлическим стерженьком
Он убедился, что валик действительно образуется, радиус отверстия меняется с постоянной скоростью, определил эту скорость и, зная толщину пленки, вычислил поверхностное натяжение жидкости по формуле
α = hρυ2/4 ,
которая представляет собой записанную иным образом формулу для скорости движения валика. Концы с концами сошлись, величина поверхностного натяжения оказалась разумной. Результат этого опыта подтверждает одну из основных идей элементарной теории взрыва пузыря, но окончательным подтверждением служить не может, так как измерения проводились с пленкой, а не с пузырем и образования конечной капли Ранд не наблюдал.
М. О. Корнфельд количественных измерений не производил, но зато тщательно проследил за тем, что происходит с пузырем от момента прокола до его полного исчезновения. С помощью специального приспособления он пробивал пленку пузыря и, воспользовавшись техникой фотографирования в импульсном режиме, получил фотографии разрушающегося пузыря на всех стадиях его исчезновения. Оказалось, что вначале все происходит в согласии с предположениями, которые положены в основу элементарной теории: отверстие расширяется, и вдоль его контура образуется валик. Однако вскоре где-то на полпути возникают «сопутствующие» процессы, не учтенные теорией. От валика отделяются водяные стерженьки, которые, как и полагается стерженькам, распадаются на отдельные капли. Оказывается, что предполагающаяся теорией одна крупная капля не возникает, а возникает их множество. Создается впечатление взрыва, порождающего множество капель-осколков. Фотографии Корнфельда (см. предыдущий рис.) это великолепно иллюстрируют.
Хочется обратить внимание еще на одно «сопутствующее» явление, которое отлично иллюстрируется фотографиями и качественно объясняется полученными ранее формулами. Толщина пленки висящего на соломинке мыльного пузыря вследствие стекания жидкости под влиянием силы тяжести внизу больше, чем вверху. Так как скорость
движения велика
υ≈ 1 / h1/2
то в нижней части валик движется медленнее, чем в верхней. Это приводит к повороту отверстия в проколотом пузыре. Поворот плоскости, в которой расположен валик, относительно соломинки отчетливо виден на фотографиях.
В появлении большого количества капель при разрушении пузыря можно убедиться средствами более доступными, чем те, которые использовал Корнфельд. Можно поступить, например, так. Стоя в реке по грудь в воде, быстрым движением рассечь воду рукой. Вскоре на поверхности воды возникнет много пузырей. Если приблизить к ним руку, она покроется множеством маленьких капель — их число значительно больше, чем число пузырей, которые лопнули под ладонью.
Явление оказалось богаче пашей фантазии. После опытов Корнфельда есть основание для построения более точной и строгой теории.