В 1928 г. в Харькове был организован новый физический институт — Украинский физико-технический институт (УФТИ). Институт был создан по решению правительства Украины на основе предложения академика Абрама Федоровича Иоффе.
А. Ф. Иоффе в качестве первостепенной задачи указал на необходимость «децентрализации физики», т. е. создания сети физических институтов по всей стране, а не только в Ленинграде и Москве. В первую очередь он указал на необходимость создания мощного физического института в Харькове — крупнейшем промышленном и культурном центре страны. Разъясняя значение такого решения, сравнивая состояние науки и техники в Германии и Франции, он указывал, что более высокий научно-технический потенциал Германии по сравнению с Францией связан именно с тем, что физические институты в Германии размещены во многих городах в отличие от Франции, в которой почти вся наука сосредоточена в одном Париже[23].
Основными сотрудниками УФТИ стали физики, переехавшие из Ленинградского физико-технического института (ЛФТИ). В Ленинграде группу ученых, уезжавших в Харьков, провожали на вокзале с музыкой, ибо их отъезд рассматривался как важный патриотический шаг.
Здание для нового института проектировал по предложению будущего директора УФТИ И. В. Обреимова ленинградский архитектор, и здание получилось отличным.
Из Ленинграда в УФТИ переехала большая группа молодых талантливых ученых: И. В. Обреимов, А. И. Лейпунский, Л. В. Шубников, К. Д. Синельников, А. К. Вальтер, В. С. Горский, Г. Д. Латышев, А. Ф. Прихотько, О. Н. Трапезникова, Л. В. Розенкевич и другие. В состав УФТИ вошли также молодые харьковские ученые А. А. Слуцкин и Д. С. Штейнберг.
В августе 1932 г. в УФТИ переехал Л. Д. Ландау. Ему было в это время 24 года, но он был уже известен во всем мире как выдающийся физик-теоретик. Этому содействовало то, что в 1929—1931 гг. он находился в заграничной научной командировке и участвовал в работе семинаров знаменитых физиков М. Борна, В. Гейзенберга, В. Паули, П. Дирака и, наконец, самого Нильса Бора. Общение его с этими крупнейшими учеными было очень активным, и им пришлось скоро убедиться в силе его необычайного таланта. Он беседовал даже с великим Эйнштейном и пытался перевести его в «квантовомеханическую веру», что, впрочем, ему не удалось. Особенно высоко оценил Ландау Нильс Бор, который, начиная с этого времени и до последних дней Ландау, относил его к числу своих лучших учеников, а Ландау считал Бора своим учителем. Много позже Иван Васильевич Обреимов в беседе со мной говорил, что в ЛФТИ Ландау недооценивали, и только он, Обреимов, зная, насколько талантлив Ландау, предложил ему должность заведующего теоретическим отделом УФТИ и полную свободу действий в смысле подготовки кадров молодых теоретиков и научной тематики.
После переезда Ландау в Харьков УФТИ стал одним из лучших мировых центров физической науки.
Цели Ландау были ясны и определенны с самого начала: создание теоретического отдела, выявление творческой молодежи и работа с ней, научная деятельность в области теоретической физики, педагогическая работа в вузах Харькова, написание книг и обзоров по теоретической и общей физике, взаимодействие с экспериментаторами УФТИ.
А ему было в это время 24 года!
К началу деятельности Ландау в УФТИ развивались экспериментальные исследования в следующих направлениях: ядерная физика и ускорители, физика низких температур, физика твердого тела, радиофизика.
Ландау считал, что физики-экспериментаторы должны владеть определенным минимумом знаний в области теоретической физики. Поэтому он читал для экспериментаторов каждую неделю лекции по теоретической физике, начиная с классической механики и кончая квантовой механикой.
С большой охотой он обсуждал результаты экспериментальных исследований, проводившихся в УФТИ. Часто далеко за полночь он просиживал в криогенной лаборатории Л. В. Шубникова, обсуждая с ним результаты его опытов, которые привели к важным открытиям. К числу их относится в первую очередь доказательство невозможности проникновения магнитного поля в сверхпроводник. Это явление получило название эффекта Мейсснера, хотя оно независимо было открыто Шубниковым, впервые показавшим, что магнитная индукция в сверхпроводнике точно равна нулю. Шубникову принадлежит также открытие промежуточного состояния сверхпроводников, теория которого была создана Ландау.
До сих пор старожилы вспоминают, как поздно вечером жена Л. В. Шубникова О. Н. Трапезникова приносила в лабораторию мужа ужин для двух Львов…
Консультировал Ландау А. И. Лейпунского и К. Д. Синельникова в связи с их ядерными исследованиями.
Много времени он уделял обсуждению работ в области физики твердого тела с И. В. Обреимовым и В. С. Горским, который выполнил первоклассные исследования по рассеянию рентгеновских лучей.
Каждую неделю в УФТИ происходило заседание совета и проводился реферативный семинар. На заседаниях совета докладывались все работы, выполнявшиеся в лабораториях УФТИ, а на реферативном собрании — новые журнальные статьи по различным разделам физики.
И совет, и реферативное собрание были прекрасной школой как для молодых, так и для опытных физиков. На собраниях особую роль играл Ландау. Его критицизм и универсальные знания позволяли ему проникать в суть всех докладов, которые делались на совете и реферативном собрании, и его блестящие комментарии и замечания по-особому освещали все происходившее на этих заседаниях. Прекрасный овальный стол, за которым сидели участники заседаний, создавал неповторимую обстановку легкости и даже интимности, чему содействовал еще подаваемый чай с пирожными.
Сотрудники института работали с огромным энтузиазмом. Творческий накал был характерен буквально для всех исследований, проводимых в институте, и он соответствовал тому духу энтузиазма, который господствовал в стране. В 1932 г. в УФТИ впервые в СССР была произведена ядерная реакция расщепления ядра лития (К. Д. Синельников, А. И. Лейпунский, А. К. Вальтер, Г. Д. Латышев). Об этом событии институт рапортовал «самому» Сталину. В рапорте говорилось:
«Украинский физико-технический институт в Харькове в результате ударной работы к XV годовщине Октября добился первых успехов в разрушении ядра атома.
10 октября высоковольтная бригада разрушила ядро лития: работы продолжаются».
В Политехническом музее в Москве была организована выставка, на которой демонстрировалась эта работа. Выставку посетил Сталин, который спросил: «Какая может быть польза от расщепления ядра?» Разъяснявший работу не мог, естественно, знать тогда о возможности использования ядерной энергии — для этого еще не пришло время. Поэтому он не нашел ничего лучше, как сказать: «А какая польза была от открытия электрона?». Сталину, видимо, этот ответ не понравился, и он лишь сказал: «Когда я учился в духовной семинарии, нас учили, что на вопрос нельзя отвечать вопросом…»
Подобно физико-механическому факультету в Ленинградском политехническом институте, в Харьковском механико-машиностроительном институте (впоследствии он вошел в состав Харьковского политехнического института) был создан физико-механический факультет, одной из функций которого была подготовка научных кадров для УФТИ. На этом факультете с 1933 г. Ландау стал заведовать кафедрой теоретической физики.
Первыми его учениками, окончившими физико-механический факультет, были Е. М. Лифшиц и А. С. Компанеец, которые стали сотрудниками организованного Ландау теоретического отдела УФТИ. Они сдали Ландау специально придуманный им теорминимум, содержащий основы основ различных теоретических разделов физики. По мысли Ландау, каждый, кто хотел заниматься теоретической физикой под его руководством, обязан был сдать в возможно краткий срок все экзамены, входящие в теорминимум. Этот закон неукоснительно выполнялся как при жизни Ландау, так и в значительной мере сейчас для всех тех, кто хочет заниматься теоретической физикой под руководством учеников Ландау.
Двери у Ландау были открыты для каждогб, кто хотел заниматься теоретической физикой, а Ландау хотел иметь много своих учеников, чтобы охватить разные разделы теоретической физики; творческие планы его были безграничны.
После сдачи теорминимума А. С. Компанеец получил от Ландау тему по теории полупроводников, в которой, в частности, должно было быть исследовано кинетическое уравнение для электронов в полупроводниках. Е. М. Лифшиц получил тему — исследовать образование электронно-позитронных пар при столкновении тяжелых заряженных частиц. Выполненная по этой теме работа была доложена летом 1934 г. на международной конференции по теоретической физике, состоявшейся в Харькове. Конференция была организована именно в Харькове потому, что там работал Ландау. Этим подчеркивалась значимость 26-летнего талантливого ученого. На конференции присутствовал сам Нильс Бор и много видных теоретиков, как наших, так и зарубежных. Из наших теоретиков здесь были В. А. Фок, И. Е. Тамм, Я. И. Френкель, а из зарубежных ученых — Е. Вильямс, Р. Пайерлс, И. Веллер и др. Во дворе УФТИ часто можно было видеть гуляющих Бора и Ландау, которые оживленно обсуждали физические проблемы.
В это время в УФТИ гостили, а часто и подолгу работали такие выдающиеся ученые, как Дирак, Фок, Подольский, Пайерлс, Вайскопф, Плачек, Гамов и др. Здесь была выполнена такая важная работа, как теория многовременного формализма в квантовой электродинамике Дирака, Фока, Подольского, являющаяся предтечей современной многовременной теории Томонага—Швингера. Делового контакта между Ландау и Дираком в то время, однако, не произошло, возможно, потому, что Ландау не сразу оценил идеи Дирака о состояниях с отрицательной энергией. (Дирак вначале считал, что этим состояниям соответствуют протоны, а не позитроны. Что было неверно.) Но уже в 1934 г. Ландау интенсивно занимался теорией Дирака.
При УФТИ в то время издавался физический журнал (на немецком языке) «Physikalische Zeitschrift der Sowiet Union», редактором которого был А. И. Лейпунский. В журнале печатались очень хорошие статьи, в частности статьи Ландау. Молодым сотрудникам Ландау часто приходилось рецензировать статьи для этого журнала. В связи с этим хочется вспомнить наставление Ландау рецензентам. Он считал, что не должно быть очень жестких преград для напечатания статей. По его мнению, можно было печатать и «патологические» статьи — лишь бы в них не нарушались законы сохранения и второе начало термодинамики. Иными словами, он был достаточно либерален в смысле печатания научных статей.
В 1934 г., окончив Киевский политехнический институт, я тоже решил попытаться стать учеником Ландау. Так как я был совсем для него чужим, то Ландау, естественно, должен был проверить мои знания. Я любил теоретическую физику, но хорошо знал в основном только классическую электродинамику. Толком не зная, что представляет собой Ландау, я смело двинулся в бой. В кабинет Ландау, находившийся на третьем этаже, меня проводил А. К. Вальтер, бывший тогда, помимо всего прочего, ученым секретарем института, и, открыв дверь в его кабинет, бросил меня в «объятия Льва». Я заметил лишь подвешенного к лампе большого зеленого резинового крокодила и восседавшего на диване хорошо одетого, с красным галстуком, Ландау, ноги которого находились на письменном столе.
Ответив на мое приветствие, Ландау сразу начал меня экзаменовать. Вопросы были следующие: как пишется уравнение Максвелла в четырехмерной форме и как пишется распределение Гиббса? Точного ответа на эти вопросы я не знал, поэтому я написал уравнение Максвелла в обычной форме. Что же касается распределения Гиббса, я ответил, что о таком я вообще не слышал, но распределение Максвелла и Больцмана написать могу, что и сделал. Ответы эти не удовлетворили Ландау и он сказал: «Чего, собственно, от вас можно было ждать, ведь вы из Киева, а в Киеве не у кого учиться теоретической физике. Впрочем, давайте-ка я вас спрошу по математике». И он предложил мне вычислить два интеграла, один из которых был интегралом от рациональной дроби. Интегралы я вычислил, не используя стандартных подстановок Эйлера, и это меня спасло, ибо, как я понял впоследствии, Ландау не терпел их и считал, что каждый раз нужно использовать какой-нибудь искусственный прием, что, собственно, я и сделал. Я сразу почувствовал, что он расположен ко мне, и первая наша беседа закончилась вопросом Ландау о форме моей одежды. Дело в том, что я был одет не как нынешние молодые люди в джинсах и модных куртках. На мне был старый китель и сапоги. Ландау сразу обратил на это внимание и спросил: «Как это Вы одеты?». Я ответил: «Я одет под товарища Сталина», — на что Ландау заметил: «А я одет под товарища Ленина».
Я понял, что дело сделано и что Ландау возьмет меня к себе. В заключение я спросил: «А что это за портреты у вас висят?» — а на стене в один ряд висели небольшие портреты Ньютона, Френеля, Максвелла, Эйнштейна, Больцмана, Планка, Гейзенберга, Шрёдингера, Дирака, Бора, Паули. Ландау сказал, что это теоретики первого класса, а Ньютон и Эйнштейн даже нулевого класса и что всех физиков-теоретиков можно разделить на пять классов. С этими словами он выскочил из кабинета и, как выяснилось далее, сказал Лейпунскому, бывшему тогда заместителем директора УФТИ, что меня можно зачислить на нижайшую должность, каковой тогда была должность инженера. Я вышел из кабинета и только теперь заметил, что на дверях кабинета Ландау висела табличка «Осторожно, кусается!». Дверь выходила в небольшой коридор, на стене которого висела надпись «Rue de Dau», что по-русски означало «улица Ландау» (Ландау тогда назывался в институте и впоследствии для учеников и сотрудников «Дау»). Коридор вел в библиотеку — «святая святых» института, которая находилась под личным управлением директора института И. В. Обреимова.
Библиотека была замечательной — в ней были только самые необходимые книги и журналы и доступ к ним был свободный. Читатель брал нужные ему книги и журналы, клал их на свободный стол и уютно усаживался возле него. По окончании работы книги и журналы не рекомендовалось ставить на места: это делала в конце рабочего дня (а рабочий день кончался часов в 10 вечера) библиотекарь Нина Михайловна.
В этой библиотеке я, а в дальнейшем и другие сотрудники теоротдела постоянно либо занимались подготовкой к теорминимуму, либо выполняли самостоятельные научные исследования. Библиотека очень располагала к работе, чему содействовала в немалой степени помощь в подборе литературы со стороны Нины Михайловны — очень образованной, интеллигентной женщины, окончившей в свое время Сорбонну. По воскресеньям библиотека была закрыта, но так как будних дней даже до 10 часов вечера не хватало, то приходилось обращаться с просьбой к И. В. Обреимову дать ключ от библиотеки на воскресенье. С этой целью нужно было подойти рано утром в воскресенье к директорскому домику, возле которого И. В. Обреимов обычно трудился в весеннее и летнее время по садоводству, и попросить ключ. Ключ он, как правило, давал, но требовал, чтобы в понедельник утром ключ был возвращен ему лично.
После сдачи теорминимума Ландау поручил мне занятьсн электродинамикой вакуума на основании теории Дирака.
Теорминимум состоял из девяти разделов — классической механики, электродинамики и специальной теории относительности, статистики, механики сплошных сред, макроскопической электродинамики, нерелятивистской квантовой механики, релятивистской квантовой механики, квантовой статистики и общей теории относительности (теории гравитации), — и по каждому из них нужно было сдать экзамен самому Ландау. После этого он называл тему самостоятельной работы и разрешал по средневековому обычаю в отношениях между мастером и подмастерьем называть его на «ты».
Трудность заключалась в том, что в то время не было учебников, по которым можно было бы просто сдать экзамены Ландау. Имеющиеся учебники не нравились ему, да в них и трудно было раскопать то, что нужно было для экзаменов. Поэтому приходилось многие вопросы изучать по оригинальным статьям. Это имело свои преимущества, так как приучало к изучению оригинальных статей, которые к тому же были написаны либо по-немецки, либо по-английски (а иногда даже по-итальянски).
Не нужно думать, что вообще не было учебников по теоретической физике, учебники такие были, но они не отвечали тем требованиям, которые предъявлял Ландау. Например, по квантовой механике была очень хорошая книга В. А. Фока «Начала квантовой механики», но в ней не использовалась δ-функция, вместо которой для целей нормировки применялся интеграл Стильтьеса.
В этой связи можно рассказать интересный случай, имевший место в Ленинградском университете. На физическом факультете математику читал замечательный ученый и педагог В. И. Смирнов, и он решил рассказать свойства δ-функции слушавшим его студентам-физикам, при этом, однако, как рассказывал мне один из этих студентов, Владимир Иванович попросил поплотнее закрыть дверь в коридор, говоря: «Не дай бог, по коридору будет проходить профессор Г. М. Фихтенгольц и услышит мое объяснение δ-функции — он тогда мне руки не подаст!»
Была, конечно, гениальная книга Дирака «Основы квантовой механики», но она была в общем малодоступной. Малодоступной была также и замечательная книга фон Неймана «Математические основы квантовой механики», в которой, кстати, тоже не было δ-функции. Кроме того, в ней слишком подробно излагалась теория измерений, которую Ландау в общем недолюбливал. Конкретные задачи фактически не излагались. Теорминимум же носил сильно прагматический характер.
По макроскопической электродинамике можно было использовать, правда в очень малой степени, известную книгу Я. И. Френкеля «Электродинамика».
Теорию гравитации приходилось изучать по книге Эдингтона «Теория относительности» и замечательной книге Г. Вейля «Пространство, время, материя».
Как-то поздно вечером, когда я изучал эту книгу, в библиотеку вошел Ландау и подошел ко мне. Я восхищался прочитанным, и моя реакция ему очень понравилась. Общую теорию относительности Эйнштейна он считал величайшим творением человеческого гения и тут же процитировал знаменитые слова А. Зоммерфельда о создании этой теории: «С глубокомыслием и последовательностью философского мышления, не встречавшимися никогда до сих пор в умах естествоиспытателей, с математической силой, которая напоминает Гаусса и Римана, Эйнштейн возвел в течение десяти лет здание, перед которым мы, следившие из года в год за его работой с напряженным вниманием, стоим, чувствуя изумление и головокружение».
Он сильно ободрил меня, сказав, что после сдачи теорминимума я смогу более или менее свободно владеть аппаратом всей теоретической физики. При этом он подчеркнул различие между теоретической физикой и математикой, сказав, что математика безгранична и ею овладеть так же «просто», как теоретической физикой, невозможно. «Именно поэтому, — добавил он, — я стал физиком-теоретиком, а не математиком, ибо я могу быть хозяином во всей теоретической физике, но не в математике». Так и было в течение всей жизни Ландау: он свободно владел всей теоретической физикой и знал ее, как мало кто в мире.
Как, однако, далеко ушла теоретическая физика с 30-х годов: теперь уже нельзя быть хозяином не только в математике, но и в теоретической физике.
Так как нужных книг не было, то вполне естественным было желание Ландау написать общедоступный курс всей современной теоретической физики.
К этой задаче он и приступил вскоре после своего переезда в Харьков.
Две книги этого курса были написаны Л. Д. Ландау и Е. М. Лифшицем в харьковский период творчества Ландау. Одна из них была посвящена классической механике, а другая — статистической физике.
Отличительной чертой курса механики было то, что в нем с самого начала вводилась функция Лагранжа механической системы и устанавливалась связь между законами сохранения и свойствами симметрии пространства-времени и силового поля. Получалась очень ясная картина классической механики Ньютона, выявлялась физическая сущность механики и создавалась надежная база для изучения всех дальнейших физических теорий.
В статистической физике излагалась термодинамика, причем изложение основывалось на общем распределении Гиббса. Благодаря этому устанавливалась фундаментальная связь между термодинамикой и статистической механикой.
В следующих книгах были те же четкость, ясность, простота. В «Теории поля» электродинамике Максвелла предшествовала специальная теория относительности, в результате чего получался синтез релятивистской механики и микроскопической электродинамики.
В квантовой механике с самого начала вводились операторы физических величин, и казалось, что по-другому и не может строиться физическая теория.
Большое число конкретных задач прекрасно разъясняло физический смысл и значение квантовой механики.
Повсюду действовало правило Ландау — «брать быка за рога», т. е. вводить читателя сразу в суть дела.
У Ландау была мысль написать ряд обзоров по различным вопросам физики. Реализовать это желание ему удалось только частично — он написал вместе с А. С. Компанейцем обзор по электропроводности металлов и вместе с Я. А. Смородинским обзор по теории ядра.
Однако делом всей его жизни было написание многотомного курса теоретической физики. 24-летний молодой человек решил, что такой курс должен быть написан, и до конца своих дней занимался этим делом, переиздавая и изменяя одни части курса и работая над созданием других частей. Работа была столь большой, что Ландау не успел ее завершить, но оставил общие принципы написания курса.
Можно сказать, что создание курса было подвигом, и этот курс является подлинным памятником Ландау и его соавтору Е. М. Лифшицу. Курс этот, лучший из всех курсов, написанных на эту тему, сыграл и продолжает играть важнейшую роль в деле подготовки молодых физиков. Не могла бы развиваться подготовка молодых физиков как у нас в стране, так и за ее рубежами, если бы не было этого курса. Этот курс в полном смысле слова произвел революцию в преподавании теоретической физики.
Однако вернемся к тому времени, когда своего курса теоретической физики у Ландау еще не было. Ему нужны были молодые способные люди, чтобы они, изучив теорминимум, стали его учениками и могли самостоятельно получать новые результаты в любимой им науке. С этой целью Ландау предпринял попытку привлечь новых молодых людей, в первую очередь из Ленинграда. Такого же взгляда придерживался и Лев Васильевич Шубников — лучший друг Ландау, который также хотел создать свою школу — школу физиков-экспериментаторов. И вот в Ленинград был послан специальный эмиссар, и дело увенчалось успехом.
Из Ленинграда прибыло пополнение — четыре молодых человека — И. Я. Померанчук, Н. Е. Алексеевский, А. К. Кикоин и С. С. Шалыт, которым предстояло выполнить дипломные работы в УФТИ. Первый из них пошел к Ландау, а остальные трое к Л. В. Шубникову.
Нас стало четверо. И. Я. Померанчук, быстро сдавший теорминимум, органически вошел в группу Ландау. (Ландау начал: называть его Чуком.) Ландау стал в подлинном смысле слова кумиром Чука на всю жизнь, и как-то впоследствии Чук говорил, что за Ландау он пошел бы на каторгу.
Дипломная работа Чука касалась свойств металлов при очень низких температурах. Первым делом для этой цели нужно было изучить теорию металлов, но без излишней мишуры и ненужных деталей. Для этого очень подходящей оказалась обзорная статья Р. Пайерлса в «Ergebnisse der exakten Naturwissenschaften», написанная по-немецки. Статью эту вместе с Чуком изучал и я. Ландау и нам вслед за ним нравилось в этой статье то, что в ней с самого начала электрон рассматривается не как свободная частица, а как некоторая квазичастица, обладающая определенными энергией и квазиимпульсом, причем зависимость энергии от квазиимпульса может быть произвольной. Впоследствии эту зависимость, которую стали называть произвольным законом дисперсии, вроде бы «переоткрыли» заново, хотя она была известна с 1928 г. после классической работы Ф. Блоха. Не дай бог, если бы при изучении свойств электронов проводимости в металле в материалах, представляемых Ландау, или, как мы их называли, формулярах, он увидел бы квадратичный, а не произвольный закон дисперсии — был бы колоссальный «разгон»! Используя общий закон дисперсии электронов в кристалле, Чук вывел формулу для температурной зависимости электропроводности металла, обусловленной взаимодействием электронов друг с другом. Этот важный результат вместе с исследованием термоЭДС металлов стал основой дипломной работы Померанчука, которую он успешно защитил в Ленинграде.
Примерно в то же время в число сотрудников теоротдела был принят иностранный гражданин Л. Тисса, который был участником международной теоретической конференции, созванной Ландау. Ландау произвел на него такое сильное впечатление, что он решил стать его учеником и выхлопотал себе разрешение быть зачисленным в УФТИ. После сдачи теорминимума Ландау поручил ему исследовать образование электронно-позитронных пар при β-распаде.
После защиты дипломной работы Чук возвратился в Харьков и был принят на работу в УФТИ. С этого времени мы стали близкими друзьями и начался длительный период нашей совместной с ним работы, продолжавшийся до смерти И. Я. Померанчука.
Первой работой, которую Ландау поручил нам, было исследование рассеяния света светом — эффекта, который возможен в электродинамике вакуума, основанной на теории Дирака. На этой работе следует остановиться особо, так как она входила в круг основных задач квантовой электродинамики того времени, основывающейся на релятивистской квантовой механике электрона Дирака.
Релятивистская квантовая механика Дирака была вершиной теорфизики того времени. Из релятивистского уравнения Дирака вместе с принятой в то время интерпретацией отрицательных уровней энергии электрона вытекал ряд замечательных выводов. Помимо образования и аннигиляции электронно-позитронных пар, к ним относились рассеяние фотона фотоном и когерентное рассеяние фотона электростатическим полем, например полем ядра (эффект Дельбрюка).
Об образовании пар при столкновении тяжелых частиц, а также при β-распаде речь шла уже выше (этими задачами занимались Е. М. Лифшиц и Л. Тисса). Новые же эффекты — рассеяние фотона фотоном и рассеяние фотона в поле ядра — Ландау поручил нам с Чуком. Эффекты представлялись столь интересными, что, как мы выяснили очень скоро, ими занимался не кто иной, как сам В. Гейзенберг.
В отличие от образования пар эти эффекты относились к высшим приближениям теории вомущений: они были эффектами 4-го порядка, в то время как образование пар представляет собой эффект 2-го порядка.
С высшими приближениями в те времена еще не работали. К тому же существовало убеждение, что высшие приближения всегда приводят к бессмысленным физическим результатам.
Гейзенберг был первым, кто не побоялся трудностей и вместе со своим учеником Эйлером нашел поправку к функции Лагранжа свободного электромагнитного поля, обусловленную дираковским «морем» электронов на отрицательных уровнях. Более того, он нашел правильное выражение для функции Лагранжа свободного электромагнитного поля, учитывающего это «море». Из этой функции Лагранжа вытекали нелинейные электродинамические эффекты в вакууме, такие, как рассеяние света светом. В этом отношении Гейзенберг «обскакал» Ландау, который хотн и понимал всю картину в целом, но не успел или не смог найти эту функцию Лагранжа.
К началу нашей деятельности функция Лагранжа уже была найдена, и работу Гейзенберга Ландау назвал героической. На Ландау был не из тех, кто быстро сдавался и опускал руки. Он сразу догадался, что Гейзенберг решил только часть задачи, хотя, может быть, и самую красивую ее часть.
Дело в том, что концепция функции Лагранжа пригодна только для медленно меняющихся в пространстве и во времени полей. Если же поля в пространстве и во времени меняются быстро, то метод функции Лагранжа вообще непригоден и необходимо развитие специальных методов исследования. Прекрасна понимая эту ситуацию, Ландау и «отдал нам приказ»: «Наступать в направлении быстро меняющихся полей!» Это и была та задача, которой мы занялись.
Сейчас кажется даже странным, что Ландау поручил решение этой задачи двум юнцам, но, с другой стороны, это показывает, насколько он верил в молодые силы!
Приступая к решению задачи, мы сразу столкнулись с тем, что не было хорошо сформулированной теории возмущений в высших приближениях. Общие формулы, правда, написать была нетрудно, хотя число возникающих членов было огромным ввиду участия отрицательных электронных состояний (число членов в амплитуде рассеяния равнялось 144). Но главное заключалось в том, что развитая нами теория возмущений не была ни релятивистски инвариантной, ни градиентно инвариантной (не нужно забывать, что в то время еще не было Фейнмана и фейнмановских диаграмм). И это привело к конфликту с Ландау. Ландау хотел и требовал, чтобы формулы были релятивистски инвариантными и градиентно инвариантными на каждом этапе вычислений. Но именно этого и не было, и мы не могли этого сделать, да и сам Ландау не мог этого сделать, хотя и чувствовал, как бы предвосхищая Фейнмана, что это сделать можно. Дело доходило до скандалов, но не двигалось вперед! Поэтому в конце концов Ландау дал указание: «Черт с вами! Делайте как хотите, если теория правильная, то результат будет и релятивистски инвариантным и градиентно инвариантным». Мы нуждались только в разрешении «на наступление» и со страшной силой устремились вперед. Прекрасно зная дираковские матрицы, мы скоро обнаружили, что амплитуда нашего процесса вроде бы бесконечна (теперь это знает каждый, кто изучал классификацию расходимостей в квантовой электродинамике). Но мы догадались, что расходимость немедленно уничтожается, если исходить из требования градиентной инвариантности. Как сейчас помню, как мы обрадовались, когда обнаружили, что 144 члена в нашей амплитуде взаимно сокращаются. Ландау тоже был очень рад. Дело пошло еще быстрее, и с криками Чука: «Даешь Варшаву!» — мы нашли дифференциальное сечение рассеяния фотона фотоном в области высоких энергий. Ландау так понравился результат, что он дал указание немедленно написать краткую заметку и послать ее в «Nature». Написанную нами заметку тотчас же перевел на английский работавший в то время в УФТИ известный немецкий физик Ф. Хаутерманс. Перевод одобрил Ландау, и заметка вскоре была опубликована.
Наши «войска» были переброшены на «дельбрюковский фронт». Хотя дельбрюковское рассеяние, казалось бы, является эффектом третьего порядка, но мы обнаружили, что это на самом деле эффект четвертого порядка, установив, что амплитуда третьего порядка равна нулю. Сейчас это известно каждому, кто занимается квантовой электродинамикой, ибо это следует из теоремы Фарри. Но в то время теорема Фарри не была известна. Можно было исходить только из того, что амплитуда когерентного рассеяния фотона имеет непосредственный физический смысл и поэтому часть ее, пропорциональная заряду электрона в кубе, должна обращаться в нуль. Именно в этом мы и убедились непосредственным расчетом, а Ландау дал к этому следующий комментарий: «Знак заряда электрона богом не установлен, а выбран условно, и его можно изменить на обратный!» Таким образом, мы вычислили и сечение рассеяния фотона фотоном, и сечение рассеяния фотона в кулоновском поле ядра.
В это время в Харьков приехал известный теоретик Виктор Вайскопф, который привез свою работу, посвященную нахождению точной функции Лагранжа свободного электромагнитного поля в квантовой электродинамике, основанную на уравнении Дирака. Он получил те же результаты, что и Гейзенберг с Эйлером, но значительно более простым путем. Мы рассказали ему паши работы, которые ему очень понравились.
Впоследствии (кажется, в 1938 г.) на ядерной конференции в Москве присутствовавшему там Паули были представлены наши работы и он их также одобрил.
Я остановился так подробно па этих работах потому, что они в то время относились к области самой актуальной физической теории.
В 1935 г. Ландау ездил к Нильсу Бору в Копенгаген. Мы с Чуком встречали его на вокзале в Харькове. Не теряя времени, в машине он рассказал нам об идее механизма образования электромагнитных ливней в веществе, высказанной Оппенгеймером и Карлсоном, а также Гайтлером и Баба. Согласно этой идее, ливень образуется не в одной точке в некоторый момент времени, а в некоторой области пространства и в течение некоторого времени в результате каскадного процесса. Впоследствии Ландау вместе с Ю. Б. Румером построили первую последовательную кинетическую теорию электромагнитных ливней, в которой были введены функции распределения электронов и фотонов. Она была усовершенствована И. Е. Таммом и С. З. Беленьким, которые учли эффект ионизации.
В настоящее время теория Ландау—Румера получила новое развитие в работах, в которых ливни изучались не в аморфной среде, как у Ландау и Румера, а в кристаллах.
В работах Ландау о ливнях снова проявился большой интерес его к квантовой электродинамике, и исследования в этой области продолжались в течение всей его жизни.
Мне приятно сейчас вспомнить, что, когда начался новый этап в развитии квантовой электродинамики, о методах устранения расходимостей в квантовой электродинамике впервые на семинаре Ландау докладывал я.
Важнейшее значение имеют исследования Ландау, выполненные совместно с А. А. Абрикосовым и И. М. Халатниковым, свойств квантово-электродинамических функций Грина. В этих работах было установлено асимптотическое поведение функций Грина в области больших импульсов и впервые найдена зависимость перенормированного заряда электрона от его «голого» заряда. Перенормированный заряд выступал при этом как некоторая функция переданного импульса или расстояния до «голого» электрона.
С этой зависимостью связана целая драматическая история. Дело в том, что используя эту зависимость, Ландау и Померанчук пришли к выводу, что физический заряд реального электрона (перенормированный заряд на больших расстояниях) должен обращаться в современной квантовой теории в нуль. Этот результат получил даже интригующее название «московского нуля». Нулификацию заряда авторы считали фундаментальнейшим результатом, вытекающим из современной теории поля. По их мнению, поляризация вакуума должна была всегда нулифицировать заряд частицы. Так по крайней мере им казалось, и они были убеждены, что формальное применение уравнений квантовой электродинамики приводит именно к этому результату. Ландау даже написал об этом в своей статье, посвященной 70-летию Нильса Бора.
Но вывод этот был настолько физически абсурден и противоречил всей физической практике, что стоило над ним призадуматься. Померанчук особенно почувствовал это, когда заметил, что Гелл-Манн, присутствовавший в Москве на конференции по высоким энергиям, явно не отреагировал на «московский нуль».
Дело в том, что поляризация вакуума в квантовой электродинамике всегда приводит к экранированию любого заряда, т. е. к уменьшению наблюдаемого (перенормированного) заряда вдали от него. Вопрос заключается в степени экранирования.
Согласно Ландау и Померанчуку, экранирование должно всегда быть полным, стопроцентным. Их формальные соображения не всеми признавались, но и не отрицалась при этом принципиальная возможность полного экранирования. Формальные соображения основывались на теории возмущений, и поэтому результат вызывал сомнения. Но любопытно отметить, что имеется пример квантово-полевой теории (модель Ли), в которой нулификация заряда получалась как точный результат без привлечения теории возмущений. Поэтому приходилось признавать, что нулификация заряда представляет собой серьезную трудность квантовой электродинамики.
Решение проблемы пришло позже, когда авторов нулификации заряда уже не было в живых. Трудность была снята после появления неабелевых калибровочных теорий поля — теории сильного взаимодействия и теории электрослабого взаимодействия, объединившей теории слабого и электромагнитного взаимодействий. В этих теориях в отличие от абелевой квантовой электродинамики наряду с эффектом экранировки заряда существует также эффект антиэкранировки. В объединенной теории антиэкранировка превышает экранировку, характерную только для абелевых калибровочных теорий поля. Поэтому в реальной физике и не возникает нулификации заряда. Приходится только горько сожалеть, что объединение взаимодействий пришло слишком поздно, когда уже не было ни Ландау, ни Померанчука…
Квантово-электродинамические исследования шли полным ходом в школе Ландау в Москве, Ленинграде, Харькове.
Исследования Ландау относятся не только к области квантовой электродинамики. Широта и диапазон его научных интересов поистине огромны. В наше время трудно, а может быть, и невозможно найти второго ученого с таким же диапазоном или, выражаясь физически, спектром интересов. Универсализм его был поистине уникален, ибо он характеризовался редкой глубиной проникновения в сущность физических явлений.
Я не могу здесь с надлежащей полнотой изложить и проанализировать тот огромный вклад, который был внесен Ландау в науку. Мне придется в основном ограничиться лишь кратким перечислением его научных достижений.
Ландау впервые ввел в квантовую механику понятие матрицы плотности (независимо от Ф. Блоха и И. фон Неймана).
Ландау создал теорию фазовых переходов второго рода.
Он построил теорию промежуточного состояния сверхпроводников.
В теории сверхпроводимости важнейшее значение имеет уравнение Ландау—Гинзбурга.
Общеизвестен диамагнетизм Ландау.
Ландау построил теорию сверхтекучести.
В физике элементарных частиц ему принадлежит теория двухкомпонентного нейтрино и введение понятия комбинированной четности (независимо от Янга и Ли). Огромную роль сыграли исследования Ландау в развитии целых областей физики, таких, как физика плазмы и физика магнетизма. Но прежде, чем говорить о них, следует отметить, как Ландау каждый раз, в каждой работе находил «нужную математику». Он прекрасно владел математическим анализом, но был в основном прагматиком и не интересовался глубокими математическими теориями. Он даже несколько бравировал, говоря, что он знает математику потому, что решил все задачи из задачника «десяти мудрецов». Иногда, правда, такая его «философия» нуждалась в сильных поправках. Например, ему явно не хватало его знаний в области теории групп. Это проявилось, когда он создавал свою теорию фазовых переходов второго рода. К счастью для него, в то лето в Харьковском математическом институте, рядом с УФТИ, гостил крупнейший алгебраист Н. Г. Чеботарев. Они играли в теннис, и это общение сильно помогло Ландау разобраться в теории представлений групп, которая была ему необходима для создания теории фазовых переходов.
Многие математические догадки Ландау были просто удивительны. Например, он сам дошел до преобразования Меллина и формулы суммирования Пуассона, не зная, что они давно уже известны. Преобразования Меллина ему понадобились для решения кинетических уравнений, введенных им в теории ливней.
К формуле суммирования Пуассона он пришел, построив общую теорию эффекта де Гааза—ван Альфена. Существенно, что каждая новая «догадка» всегда была уместной в развиваемой им теории. Но у Ландау были и свои странности. Он, напрпмер, не признавал аппарата теории вероятностей. Однажды был такой случай. В споре, касающемся значения теории вероятности„ И. М. Лифшиц всячески отстаивал значение этой науки. Ландау же всячески ее отрицал и говорил: «Я вам решу любую конкретную задачу из этой теории, не зная самой теории!» Тогда И. М. Лифшиц сказал: «Ну, хорошо, в таком случае решите следующую задачу: как найти функцию распределения по размерам частиц при их дроблении?»
Ландау сказал: «Хорошо, я подумаю». Вечером того же дня Ландау позвонил к нам в номер гостиницы «Якорь», в котором мы остановились с И. М. Лифшицем, и сообщил ему по телефону решение задачи. Решение было правильное.
Вообще Ландау очень любил математическую технику. Стоило ему сказать, что в работе, которую ему собирались рассказать, встретился «хитрый» интеграл, и при этом еще его «подначить», что «сомнительно, чтобы ты его смог взять!» — как он бросал дискутируемый физический вопрос и говорил: «Давай сюда интеграл!» И каждый раз быстро находил правильное решение.
Как я уже говорил, некоторые его работы, которым, возможно, он сам и не придавал особого значения, сыграли важнейшую роль в развитии целых областей физики, например физики плазмы. На этом вопросе стоит остановиться подробнее.
Еще на заре своего творчества Ландау выполнил ставшую классической работу о кинетическом уравнении в случае кулоновского взаимодействия. В этой работе он установил вид интеграла столкновений при кулоновском взаимодействии частиц. Вначале эта работа числилась в ряду чисто академических исследований, но вот постепенно все больше и больше стали заниматься свойствами плазмы. Физика плазмы стала одной из важнейших областей науки, особенно учитывая возможность плазменных термоядерных устройств. И тогда вспомнили работу Ландау о кинетическом уравнении при кулоновском взаимодействии, а интеграл столкновений стали называть интегралом столкновения Ландау. И без него нельзя решить ни задачу о релаксации в плазме, ни задачу об электропроводности плазмы, ни задачу о нагреве плазмы, а нагрев плазмы стал задачей задач, даже, можно сказать, задачей эпохи.
Теперь остановимся на другой плазменной задаче. В плазме столкновения частиц очень редки, поэтому исходным математическим уравнением, описывающим свойства такой плазмы, является кинетическое уравнение без столкновений, но с учетом так называемого самосогласованного поля частиц. Это уравнение было впервые установлено А. А. Власовым и носит название «уравнение Власова». Для плазмы оно играет важнейшую роль. Однако Власов, к сожалению, не избежал «звездной болезни» и стал применять свое уравнение, которое он считал сверхуниверсальным, всюду, где можно и где нельзя. Естественно, что это вызвало соответствующую реакцию научной общественности, и в «Журнале экспериментальной и теоретической физики» появилась критическая статья за четырьмя подписями: В. Л. Гинзбурга, Л. Д. Ландау, М. А. Леонтовича и В. А. Фока.
Мало того, Ландау подверг сомнению главный результат Власова в теории бесстолкновительной плазмы — закон дисперсии ленгмюровских волн. От критического ума Ландау не ускользнул тот факт, что Власов беззаботно произвел деление на нуль, что, как говорил Ландау, является «безнравственным». Ландау показал, как следует обойти нуль в знаменателе или, как говорят математики, обойти полюс. Но при этом он пришел к потрясающему выводу: результат Власова в основном правилен там, где речь идет о законе дисперсии, но волны Ленгмюра не будут незатухающими, а будут слегка затухать, и Ландау вычислил это затухание. Ныне оно называется затуханием Ландау и играет важнейшую роль во всех плазменных процессах. Правда, Ландау пришел к затуханию скорее не как физик, а как математик, прекрасно владеющий техникой теории функций комплексного переменного, которая, как я много раз убеждался, органически была ему свойственна.
После работы Ландау появилось огромное число статей, в которых была выяснена физическая природа затухания Ландау и было показано, что это затухание обусловлено резонансным взаимодействием электронов с самосогласованным полем волны.
Сейчас нет ни одной работы по теории плазмы, где не фигурировало бы затухание Ландау.
С этой работой связано еще одно важное направление в физике плазмы, развитие которого обязано уже не самому Ландау, а другим физикам, в том числе и его ученикам. Речь идет о взаимодействии пучков заряженных частиц с плазмой (при прохождении их через плазму). В этом случае в плазме возникают колебания не затухающие, а, наоборот, нарастающие, т. е. колебания, амплитуда которых увеличивается с течением времени. Явление это, называемое пучковой неустойчивостью, играет важную роль в физике плазмы как в принципиальном отношении, так и с точки зрения практических приложений. Когда эта работа докладывалась Ландау, он не только одобрил ее, но и внес техническое усовершенствование в расчеты.
Но докладывать ему было не просто, так как воспринимал он все очень критически. Например, когда я ему рассказывал кинетическую теорию колебания плазмы в магнитном поле, он сперва сказал: «Где ты видел плазму, да еще в магнитном поле?» Но затем работу одобрил. Так же было и с работой об устойчивости магнитогидродинамических волн.
Магнетизм был с давних времен любимой темой Ландау. Еще будучи в заграничной командировке, он нашел энергетический спектр электрона в магнитном поле (уровни Ландау) и использовал его в задаче о магнитных свойствах свободного электронного газа. При этом он обнаружил, что вопреки всеобщему мнению в квантовой теории газ приобретает диамагнитный момент, частично компенсирующий так называемый паулевский спиновый парамагнитный момент. В связи с этой работой у него даже возник спор с В. Паули, и спор этот был выигран Дау.
Коронной работой Ландау в области магнетизма была работа о движении магнитного момента в ферромагнетике. Совместно с Е. М. Лифшицем он установил уравнение движения момента, носящее название уравнения Ландау—Лифшица. Им широко пользуются при исследовании самых различных процессов в магнитоупорядоченных средах. Особенно важно оно при изучении различных колебательных процессов в этих средах.
Ландау прекрасно «чувствовал» эту область физики. Мне вспоминается, как просто и изящно он разъяснял макроскопическую природу блоховских спиновых волн и как все четко и ясно становилось при этом на свои места. Об этом же говорят и наши дискуссии с ним о магнитоупругих волнах и магнитоакустическом резонансе.
Необходимо отметить также и то, что Ландау принадлежит первая математическая теория доменной структуры ферромагнетиков.
Важнейшим элементом в творчестве Ландау был его знаменитый семинар, регулярно проходивший по четвергам в Институте физических проблем. Можно сказать, что семинар был своеобразным явлением. Это не было «простое» собрание, на котором учтиво предоставляется слово докладчику, которого не перебивают до конца доклада и затем вежливо-полулицемерно благодарят за сделанный интересный доклад. Это была скорее «запорожская сечь», на которой докладчику нужно было «держать ухо востро», чтобы его «случайно» не сбил с толку Ландау. Дело в том, что Ландау отличался острейшим умом и колоссальной степенью критицизма. На семинаре он особенно не стеснялся, поэтому докладчик должен был очень хорошо понимать содержание докладываемой статьи, ибо он для Ландау олицетворял самого автора и все шишки, которые по праву должны были принадлежать автору, падали на голову докладчика. Происходила в некотором смысле своеобразная «борьба» между докладчиком и Ландау, которая, естественно, была очень интересна для всех участников семинара, а их всегда было очень много: это были и сотрудники московских институтов и Дубны, и приезжие товарищи из Ленинграда, Харькова, Киева, Новосибирска.
Каждый, кто не боялся критики, шел докладывать на семинар Ландау. Если докладываемая работа была собственной работой докладчика, то после похвалы Ландау докладчик был «на седьмом небе», ибо одобрение Ландау было в значительной мере критерием истинности результатов. Но часто докладчик уходил обескураженным, не получив одобрения Ландау. В таких случаях нужно было самому пересмотреть свою работу и попросить Ландау снова выслушать ее. Ландау в этом никогда не отказывал.
Семинар Ландау был замечательной школой для теоретиков, так как докладчик получал от него огромную пользу — ведь понять научную статью не так просто, а тут нужно было еще ясно н четко изложить ее в присутствии Ландау. Участники семинара получали возможность общаться с Ландау и рассказывать ему свои работы или, как говорилось, «пропускать их через Ландау».
Семинар содействовал «образованию» самого Ландау. В этой связи следует особо отметить роль сотрудников Померанчука, благодаря которым Ландау был в курсе всего, что делалось в физике высоких энергий и элементарных частиц.
Каждое заседание семинара было событием. Участники семинара уходили обогащенные и долго еще обсуждали его результаты.
Ясный критический ум Ландау был известен во всем мире. Я в этой связи не могу не вспомнить рочестерскую конференцию по физике высоких энергий в Киеве в 1959 г. На ней был Ландау; приехал также Вернер Гейзенберг. Мы с большим интересом наблюдали их встречу. Но светская беседа продолжалась недолго, Гейзенберг взял в свои цепкие руки Ландау и буквально не отпускал его от себя. Он явно «пропускал» свои идеи через «фильтр» Ландау — так он ценил критический ум этого человека. Ландау даже уставал от Гейзенберга и говорил нам об этом. Конференция эта запомнилась мне еще и потому, что на ней помирились Ландау с Померанчуком, между которыми перед этим «пробежала кошка», впрочем, скорее котенок. Они оба переживали эту размолвку.
Ландау сделал блестящий доклад об особенностях диаграмм Фейнмана — четкий, ясный, доходчивый, без единого лишнего слова, такой же доклад, как и все его другие доклады и лекции, которые невозможно забыть.
А какой доклад он сделал у Игоря Васильевича Курчатова о так называемой комбинированной четности в 1956 г.! В то время Ландау осенила блестящая мысль, касающаяся свойств симметрии слабого взаимодействия. Дело в том, что на опыте было установлено, что слабое взаимодействие различает «левое и правое» направления вращения. Это значило, что в этом взаимодействии не сохраняется так называемая пространственная четность. И вот Ландау высказал идею, что если изменить пространственное направление и, кроме того, заменить частицу античастицей, то все останется без изменения. Это свойство симметрии Ландау назвал комбинированной четностью. Комбинированная четность стала скоро достоянием широкой научной общественности, и Игорь Васильевич Курчатов захотел узнать о комбинированной четности из первоисточника. Ландау согласился сделать доклад в «курчатнике» и на доклад взял меня с собой. Доклад был замечательным и вызвал овацию. Сейчас тем не менее приходится сказать, что закон сохранения комбинированной четности не является абсолютно точным и в ряде случаев он не выполняется, хотя степень его нарушения очень мала.
Чтобы оттенить и подчеркнуть критицизм Ландау, стоит, пожалуй, сказать о тех случаях, правда очень немногочисленных, когда его критицизм переходил в собственную противоположность. Речь идет только о двух известных мне случаях «потери бдительности» Ландау — о варитронах и об утверждении о «ликвидации» понятия гамильтониана в теории поля.
Варитронами были названы элементарные частицы с переменной массой, будто бы открытые в космических лучах. Ландау поверил в это открытие без тщательного разбора возможных ошибок эксперимента. Такой анализ, впрочем, он и не умел делать. И именно это привело Ландау к преждевременному заключению о существовании варитронов. Однако сотрудниками ФИАНа СССР и зарубежными специалистами по космическим лучам было показано, что варитроны не существуют.
К выводу о необходимости «ликвидировать» гамильтониан Ландау пришел, исходя из своей нулификации заряда. При этом Ландау противопоставил теории поля, которую фактически стал отрицать, диаграммную технику, которой придал особый смысл, считая, что она не связана с теорий возмущений и представлениями о гамильтониане взаимодействия. Хотя эта «философия» и является неверной, как мы теперь знаем, она не помешала Ландау решить очень важный вопрос об аналитических свойствах диаграмм Фейнмана и выяснить вопрос об их особенностях (особенности Ландау).
Ландау всегда отдавал должное чужим работам. Например, к крупнейшим достижениям теоретической физики он относил работы А. А. Фридмана по теории гравитации, А. Н. Колмогорова по определению спектра турбулентности и Н. Н. Боголюбова по теории неидеального бозе-газа. Он очень высоко ценил замечательные работы В. А. Фока по квантовой механике и М. П. Бронштейна по квантованию гравитационного поля. Он всегда говорил, что Л. И. Мандельштам, как никто другой (если не считать Н. Бора), понимает смысл и роль измерения в квантовой механике.
Возвратимся к истокам работы Ландау в Харькове и остановимся на его педагогической деятельности. Ландау очень любил педагогическую работу и был прирожденным талантливейшим педагогом. Он начал свою педагогическую деятельность с заведования кафедрой теоретической физики на физико-механическом факультете Харьковского механико-машиностроительного института и быстро организовал хорошее преподавание теоретической физики. К этой работе привлекались и мы — молодые его сотрудники. Мы решали задачи по различным разделам теоретической физики, а позже читали и самостоятельные лекции. При этом принцип был таков: ни один курс не закреплялся за кем-нибудь из нас — все разделы читались поочередно каждым из нас. Благодаря этому достигалась главная цель Ландау — все должны владеть основами науки н педагогическая работа должна содействовать этому.
Несколько позже, в 1936 г., Ландау начал преподавать в Харьковском университете, где некоторое время заведовал кафедрой общей физики. Ландау преподавал на первом курсе общую физику. У него были некоторые свои принципы преподавания физики. В основном они сводились к тому, что в самом курсе должны излагаться только основные законы, причем должна выявляться только физическая сущность законов. Детали опытов и устройство физических приборов не должны излагаться в основном курсе, а должны быть выделены в лабораторные работы. В этой связи Ландау ругал известный в свое время обширный курс О. Д. Хвольсона, в котором, как говорил Ландау, «смешаны фундаментальные законы физики с гайками для закрепления отдельных деталей приборов». Слово «хвольсонизм» в лексиконе Ландау означало такого рода эклектику или мешанину. Ясно, что, находясь на такой позиции, Ландау должен был прийти к мысли о необходимости написания собственного курса общей физики, подобно тому как раньше он пришел к мысли о необходимости написания собственного курса теоретической физики. Но курс общей физики не должен был дублировать курс теоретической физики и должен содержать предельно мало математики. Детали опытов и устройство приборов должны были в нем отсутствовать. Такой курс Ландау и начал писать в сотрудничестве с Е. М. Лифшицем и автором этих строк. Были написаны механика и молекулярная физика. Последующие разделы общей физики Ландау хотел тоже написать, но уже не успел. Книга «Механика и молекулярная физика» издавалась дважды и переведена на многие иностранные языки.
У Ландау была даже мысль о написании школьного учебника по физике. В первые годы пребывания в Харькове его очень занимали мысли о преобразовании всей системы преподавания точных наук в средней и высшей школе. Он даже ездил по этому поводу в редакцию газеты «Правда», где имел беседу с главным редактором.
Лекции по общей физике Ландау читал прекрасно. Они отличались простотой, ясностью, изяществом формулировок, доступностью. Мы все ходили на его лекции и восхищались ими. Лекции посещал вместе с нами профессор Лев Васильевич Шубников — близкий друг Ландау. После его лекций, бывало, Ландау покупал большой кекс, и в его кабинете в УФТИ мы его коллективно съедали!
Но не все было хорошо и спокойно, и «зубрам» лекции Ландау не нравились. Пошел даже слушок, что Ландау — идеалист, и нас — молодых сотрудников — вызвали в Киев (ставший столицей Украины) в Наркомпрос. Принял нас сам нарком (которым был тогда В. П. Затонский) и сказал нам, что Ландау — идеалист. Мы молчали. Но потом он добавил, что у него есть сведения. будто Ландау отрицает закон сохранения энергии. Тут моя «казацкая» душа не выдержала, и с некоторой наивностью я заявил: «Не позже чем вчера я получил такой нагоняй от Ландау за несохранение энергии в одном из моих расчетов, что долго о нем буду помнить. Вот и Померанчук, сидящий здесь, может это подтвердить». Нарком рассмеялся и после нескольких общих замечаний сказал: «Езжайте в Харьков и спокойно работайте!»
Ландау всегда интересовало дело преподавания общей физики в высшей школе, и сам он до конца жизни преподавал курс общей физики на физическом факультете Московского университета. Мне он советовал перейти с преподавания теоретической физики на преподавание общей физики на первых двух курсах университета, что я и сделал.
Когда мы говорим о Ландау и вспоминаем его крупные научные открытия, то мы должны их сравнивать с редкими по величине и красоте драгоценными камнями. Они образуют как бы корону Ландау, но от него осталась еще бездна более мелких алмазов и жемчужин, которых, как поется в «Садко», «не счесть… в каменных пещерах». Они рассыпаны в его энциклопедическом курсе теоретической физики, в задачах, входящих в этот курс, и в оригинальных ландауских выводах многочисленных закономерностей и соотношений. Это относится в огромной степени и к гидродинамике, и к теории упругости, и к электродинамике сплошных сред. Эти книги с полным правом могут быть сравнены со знаменитыми «Paper’s» Рэлея. Если вы начинаете заниматься каким-то конкретным вопросом, относящимся к макрофизике, то всегда нужно сперва посмотреть, что по этому поводу думали и писали Рэлей и Ландау.
Ландау хорошо знал достижения современной ему экспериментальной физики, причем это утверждение в равной мере относится и к физике ядра, и к физике твердого тела, и к физике элементарных частиц. Он всегда охотно выслушивал экспериментаторов, рассказывавших ему о своих работах. Но ближе всего он был с двумя великими мастерами эксперимента — с Львом Васильевичем Шубниковым и Петром Леонидовичем Капицей. Их эксперименты вдохновляли его, а обсуждения с ним помогали им. Это относится и к работам Шубникова по сверхпроводимости и антиферромагнетизму, и к замечательной работе Капицы о сверхтекучести гелия, эта работа содействовала созданию фундаментальной теории сверхтекучести Ландау. За эту работу и другие исследования в области теории конденсированного состояния Ландау в ноябре 1962 г. была присуждена Нобелевская премия. В том же году Ландау был удостоен (совместно с Е. М. Лифшицем) Ленинской премии за курс теоретической физики.
Ландау в подлинном смысле слова был великим учителем. Не говоря уже о непосредственных его учениках, имевших счастье лично общаться с ним, его курс содействовал развитию теоретической физики во всем мире, ибо по этому курсу изучали и продолжают изучать теоретическую физику молодые начинающие ученые и им пользуются как энциклопедией и кладезем мудрости уже опытные физики.
Необычайно высок был нравственный облик Ландау — его безупречная чистота и понимание научной этики. Ландау считал безнравственным «участие» псевдоруководителей в работах их сотрудников. П. Л. Капица также придерживался такого же взгляда и даже говорил, что каждый соавтор, подписавший общую работу, должен по крайней мере уметь разъяснить все ее детали, а это требование не всегда выполнялось и выполняется…
Великий талант, огромная научная результативность, всемирная известность и авторитет, создание большой школы активно работающих учеников, замечательный курс теоретической физики, охватывающий почти все ее разделы, критический ум, бескомпромиссная оценка и своих и чужих работ, демократизм в обращении с людьми независимо от их чинов, званий и имеющихся регалий — все эти качества уже при его жизни создали легенду о Ландау.