Разобрав теперь «отношения, которые несёт в себе самом наше пространство», мы должны вернуться к вопросу о том, что же в действительности представляют собой измерения пространства? И почему их три?
Самым странным должно представляться то, что невозможно определить трёхмерность математически.
Мы плохо сознаём это, и это кажется парадоксом, потому что мы всё время говорим об измерении пространства, но это факт. Математика не чувствует измерений пространства.
Возникает вопрос, как может такое тонкое орудие анализа, как математика, не чувствовать измерений, если они представляют собой какие-то реальные свойства пространства.
Говоря о математике, необходимо прежде всего признать, как основную предпосылку, что всякому математическому выражению соответствует отношение каких-то реальностей.
Если этого нет, если это не верно, то нет математики. Это её главная сущность, главное содержание. Выражать отношения величин — вот задача математики. Но отношения должны быть между чем-нибудь. Вместо алгебраических а, b и с всегда должно быть можно подставить какую-нибудь реальность. Это азбука всей математики: а, b и c — это кредитные билеты, они могут быть настоящими, если за ними есть реальное нечто, и могут быть фальшивыми, если за ними нет никакой реальности.
«Измерения» играют здесь очень странную роль. Если мы изобразим их алгебраическими знаками а, b и с, то они будут иметь характер фальшивых кредитных билетов. Эти а, b и с нельзя заменить никакими реальными величинами, которые выражали бы отношения измерений.
Обыкновенно изображают измерения степенями, первой, второй и третьей, то есть если линию называют а, то квадрат, стороны которого равны этой линии, называют а2, и куб, стороны которого равны этому квадрату, называют а3.
Это между прочим дало основание Хинтону строить теорию тессарактов, тел четырёх измерений, а4. Но это чистая беллетристика. Прежде всего потому, что изображение «измерений» степенями совершенно условно. Все степени можно изобразить на линии. Возьмём отрезок а, равный пяти миллиметрам; тогда отрезок в 25 миллиметров будет его квадратом, то есть а2; а отрезок в 125 миллиметров будет кубом, то есть а3.
Как же понять, что математика не чувствует измерений, то есть что математически нельзя выразить разницу между измерениями?
Это можно понять и объяснить только одним — именно, что этой разницы не существует.
И действительно, мы знаем, что все три измерения в сущности тождественны, то есть каждое из трёх измерений можно по очереди рассматривать как первое, как второе, как третье и наоборот. Это уже ясно доказывает, что измерения не есть математические величины. Все реальные свойства вещи могут быть выражены математически в виде величин, то есть числами, показывающими отношение этих свойств к другим свойствам.
Но математика в вопросе об измерениях видит как будто больше нас или дальше нас, через какие-то грани, которые останавливают нас, но не стесняют её; и видит, что нашим понятиям измерений не соответствуют никакие реальности.
Если бы три измерения соответствовали действительно трём степеням, то мы имели бы право сказать, что только три степени относятся к геометрии, а все остальные отношения высших степеней, начиная с четвёртой, лежат за геометрией.
Но у нас нет даже этого. Изображение измерений степенями совершенно условно.
Вернее сказать — геометрия с точки зрения математики есть искусственное построение для разрешения задач на условных данных, выведенных, вероятно, из свойств нашей психики.
Систему исследования «высшего пространства» Хинтон называет метагеометрией, и он связывает с метагеометрией имена Лобачевского, Гаусса и других исследователей неэвклидовой геометрии.
Мы должны рассмотреть, в каком отношении к затронутым нами вопросам находятся теории этих учёных.
Хинтон выводит свои идеи из Канта и Лобачевского.
Другие наоборот, противопоставляют идеи Канта идеям Лобачевского. Так Роберто Бонола в «Неэвклидовой геометрии» говорит, что воззрение Лобачевского на пространство противоположно кантовскому. Он говорит:
Учение Канта рассматривает пространство как некоторую форму субъективного созерцания, необходимо предшествующую всякому опыту; учение Лобачевского, примыкающее скорее к сенсуализму и обычному эмпиризму, возвращает геометрию в область опытных наук.[4]
Какой же взгляд правилен, и в каком отношении стоят идеи Лобачевского к нашей проблеме? Вернее всего будет сказать: ни в каком отношении. Неэвклидова геометрия не есть метагеометрия, и неэвклидова геометрия стоит к метагеометрии в таком же отношении, как эвклидова геометрия.
Результаты всей неэвклидовой геометрии, подвергшей переоценке основные аксиомы Эвклида и нашедшей своё наиболее полное выражение в работах Больяйя, Гаусса и Лобачевского, выражается в формуле: «Аксиомы данной геометрии выражают свойства данного пространства».
Так геометрия на плоскости принимает все три аксиомы Эвклида, то есть:
1) прямая линия есть кратчайшее расстояние между двумя точками;
2) каждую фигуру можно переносить на другое место, не нарушая её свойств;
3) параллельные линии не встречаются (эта последняя аксиома обыкновенно выражается по Эвклиду иначе).
В геометрии на сфере или на вогнутой поверхности верны только две первые аксиомы, так как меридианы, параллельные у экватора, у полюсов уже встречаются.
В геометрии на поверхности с неправильной кривизной верна только первая аксиома, вторая — о переносе фигур, уже невозможна, так как фигура, взятая в одном месте неправильной поверхности, может измениться при переносе на другое место. И сумма углов треугольника может быть и больше, и меньше двух прямых [углов, т. е. 180°].
Таким образом аксиомы выражают различие свойств различного рода поверхностей. Геометрическая аксиома есть закон данной поверхности.
Но что такое поверхность?
Заслуга Лобачевского в том, что он находил необходимым пересмотреть основные понятия геометрии. Но он никогда не шёл так далеко, чтобы переоценить эти понятия с точки зрения Канта. В то же время он ни в каком смысле не возражал против Канта. Поверхность в уме Лобачевского как геометра была только средством обобщения некоторых свойств, в которых строилась та или другая геометрическая система, или обобщением свойств данных линий. О реальности или нереальности поверхности он, вероятно, совсем не думал.
Таким образом с одной стороны, совершенно не прав Бонола, который приписывает Лобачевскому воззрения, противоположные кантовским, и близость к «сенсуализму» и «обычному эмпиризму», а с другой стороны, можно думать, что Хинтон совершенно субъективно приписывает Гауссу и Лобачевскому, что они открыли новую эру в философии.
Неэвклидова геометрия, в том числе и геометрия Лобачевского, не имеет никакого отношения к метагеометрии.
Лобачевский не выходит из сферы трёх измерений.
Метагеометрия рассматривает сферу трёх измерений как разрез высшего пространства. Из математиков ближе всех к этой идее стоял Риман, понимавший отношение времени к пространству.
Точка трёхмерного пространства есть разрез метагеометрической линии. Линии, которые рассматривает метагеометрия, нельзя обобщить ни в какой поверхности. Это последнее, может быть, самое важное для определения различия геометрии (эвклидовой и неэвклидовой) и метагеометрии. Метагеометрические линии нельзя рассматривать как расстояние между точками в нашем пространстве. И нельзя представить себе образующими какие-либо фигуры в нашем пространстве.
Рассмотрение возможных свойств линий, лежащих вне нашего пространства, их углов и отношений этих линий и углов к линиям, углам, поверхностям и телам нашей геометрии и составляет предмет метагеометрии.
Исследователи неэвклидовой геометрии не могли решиться отойти от поверхности. В этом есть что-то прямо трагическое. Посмотрите, какие поверхности придумывал Лобачевский при своих исследованиях 11-го постулата Эвклида (о параллельных линиях, или об углах, образуемых линией, пересекающей две параллельные) — одна из его поверхностей похожа на поверхность лопастей вентилятора[5], другая на поверхность воронки. Но отойти от поверхности совсем, бросить её раз и навсегда, представить себе, что линия может быть не на поверхности, то есть что ряд линий параллельных или близких к параллельным не может быть обобщён ни на какой поверхности и даже вообще в трёхмерном пространстве — он не мог решиться. И поэтому — и он и очень многие другие геометры, создавая неэвклидову геометрию, не могли выйти из трёхмерного мира.
Механика признаёт линию [переноса энергии] во времени, то есть такую линию, какую никак нельзя представить себе на поверхности или как расстояние между двумя точками пространства — эта линия берётся в расчёт при вычислении [работы] машин. Но геометрия никогда не касалась этой линии и имела дело всегда только с её разрезами.
* * *
Теперь можно вернуться к вопросу: «что такое пространство?» и посмотреть, найден ли ответ на этот вопрос.
Ответом было бы точное определение и объяснение трёхмерности пространства как явления мира.
Но этого нет. Трёхмерность пространства как объективное явление осталась такой же загадочной и непонятной, как прежде. По отношению к ней необходимо:
— или принять её как данное и прибавить это данное к тем двум данным, которые мы установили вначале;
— или признать неправильность всего объективного метода рассуждения и вернуться к другому [(не кантовскому)] методу, указанному в начале [этой книги].
Тогда, исходя из двух основных данных — мира и сознания, должно установить, свойством чего является трёхмерное пространство, свойством мира или свойством нашего познания мира.
Начав с Канта, который утверждает, что пространство есть свойство восприятия мира нашим сознанием, я дальше намеренно уклонился от этой идеи и рассматривал пространство как свойство мира.
Я допустил вместе с Хинтоном, что наше пространство в самом себе несёт условия, которые позволяют нам установить его отношения к высшему пространству и на основании этого предположения построить целый ряд аналогий, кое-что выяснивших для нас в вопросах пространства и времени и их взаимных отношений, но, как уже было сказано, ничего не разъяснивших относительно главного вопроса о причинах трёхмерности пространства.
Метод аналогий вообще довольно мучительная вещь. Вы ходите с ним по замкнутому кругу. Он помогает уяснить некоторые вещи и отношения вещей, но в сущности никогда и ни на что не даёт прямого ответа. После долгих и многочисленных попыток разобраться в сложных вопросах при помощи аналогий, вы чувствуете тщетность всех ваших усилий, чувствуете, что с этими аналогиями ходите вдоль стены — и тогда вы начинаете испытывать прямо ненависть и отвращение к аналогиям и находите необходимость искать прямого пути, непосредственно ведущего туда, куда вам нужно.
Проблема высших измерений обыкновенно разбиралась путём аналогий. Только в самое последнее время в науке начинает вырабатываться прямой метод, который дальше будет указан.
И если мы хотим идти прямым путём, не уклоняясь от него, мы должны строго держаться основных положений Канта. Если же мы с точки зрения этих положений формулируем приведённую выше мысль Хинтона, то получится следующее: мы в себе самих несём условия нашего пространства и поэтому в себе же должны найти условия, которые позволили бы нам установить отношения нашего пространства к высшему.
Иначе говоря, мы должны в нашей психике, в нашем воспринимательном аппарате найти условия трёхмерности мира — и там же найти условия возможности мира высших измерений.
Поставив себе такую задачу, мы становимся на совершенно прямой путь и должны будем получить ответ на наш вопрос: что такое пространство и его трёхмерность?
Каким образом можем мы подойти к решению этой задачи?
Совершенно ясно, что путём изучения нашего сознания и его свойств. Мы освободимся от всяких аналогий и станем на правильный и прямой путь к решению основного вопроса об объективности или субъективности пространства, если решим рассмотреть психические формы, в которых нами познаётся мир, и посмотреть — нет ли соответствия между ними и трёхмерной протяжённостью мира, то есть не вытекает ли из известных нам свойств нашей психики это представление трёхмерной протяжённости мира с его свойствами.