Коши' зада'ча, одна из основных задач теории дифференциальных уравнений , впервые систематически изучавшаяся О. Коши . Заключается в нахождении решения u (x, t); х = (x1 ,..., xn ) дифференциального уравнения вида:
, (1)
m 0 < m, m > 0,
удовлетворяющего т. н. начальным условиям.
, t = t 0 , x Î G 0 , k = 0, …, m-1, (2)
где G 0 — носитель начальных данных — область гиперплоскости t = to пространства переменных x1 ,..., xn . Когда F и fk , k = 0,..., m — 1, являются аналитическими функциями своих аргументов, задача Коши (1), (2) в некоторой области G пространства переменных t, х, содержащей G0 , всегда имеет и притом единственное решение. Однако это решение может оказаться неустойчивым (т. е. малое изменение начальных данных может вызвать сильное изменение решения), например в том случае, когда уравнение (1) принадлежит эллиптическому типу. При неаналитических данных задача Коши (1), (2) может потерять смысл, если не ограничиться рассмотрением того случая, когда уравнение (1) является гиперболическим.
Лит.: Курант Р., Гильберт Д., Методы математической физики, пер. с нем., т. 2, М.— Л., 1951; Тихонов А. Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966.
А. В. Бицадзе.
ТЕЛЕГРАМКанал с обзорами, анонсами новинок и книжными подборками
Книжный Вестник
Бот для удобного поиска книг (если не нашлось на сайте)
Поиск книг
Свежие любовные романы в удобных форматах
Любовные романы
Детективы и триллеры, все новинки
Детективы
Фантастика и фэнтези, все новинки
Фантастика
Отборные классические книги
Классика
Библиотека с любовными романами, которая наверняка придётся по вкусу женской части аудитории
Любовные романы
Библиотека с фантастикой и фэнтези, а также смежных жанров
Фантастика
Самые популярные книги в формате фб2
Топ фб2
книги