Иоганн Кеплер — одна из выдающихся переломных фигур в истории науки: его ум был наполовину поглощен средневековыми фантазиями, но другая половина вынашивала начатки математической науки, сформировавшей современный мир.
Пока арабы развивали математику, Европа погрузилась во мрак Средневековья. Лишь очень немногие европейцы получали формальное образование; великие работы классической античности были почти забыты; ученых-математиков почти не было. В монастырях обучали лишь простейшим основам геометрии и арифметики. В течение 400 лет корпус математических знаний не пополнился ничем сколько-нибудь значительным.
И только с приходом европейского Возрождения в XV веке в математике стало заметно оживление. С подъемом гуманистического движения снова возник интерес к греческим классикам — сначала к греческой литературе, а затем и к математике. Романтика греческой интеллектуальной жизни прекрасно изображена на фреске Рафаэля «Афинская школа» (1510–1511), где показано воображаемое собрание Пифагора, Евклида, Сократа, Аристотеля, Платона и других греческих ученых (рис. 6.1).
Важной особенностью искусства эпохи Возрождения была перспектива. Многогранники и их остовы стали отличными объектами для демонстрации мастерства владения перспективой. Такие художники, как Пьеро делла Франческа, Альбрехт Дюрер и Даниэле Барбаро, внесли вклад как в математику, так и в искусство своими сочинениями о перспективе на примере многогранников. Среди множества художников, запечатлевших многогранники на своих картинах (см. рис. 6.2 и 6.3), были Леонардо да Винчи, который иллюстрировал книгу Лука Пачоли «Божественная пропорция» (1509); Венцель Ямницер, создавший тонкие, изысканные гравюры реальных и воображаемых многогранников; Якопо де Барбари, написавший портрет Луки Пачоли с многогранником; Паоло Уччелло, который включал многогранники в свои картины и мозаики на полу собора Святого Марка в Венеции; Фра Джованни да Верона, создавший восхитительные интарсии (мозаики из дерева), и, как мы видим (рис. 6.5–6.8), Иоганн Кеплер, физик и математик.
Рис. 6.1. Рафаэль, «Афинская школа»
Подобно ученым и художникам Возрождения, жившим за двести лет до него, Кеплер был очарован многогранниками. В наши дни мы знаем Кеплера в основном как астронома, прославившегося законами движения планет (которые описывают эллиптическое движение планет вокруг Солнца), но это далеко не единственный его вклад в науку и математику. Его идеи бесконечного и бесконечно малого предвосхитили математический анализ. Он опубликовал работу по оптике. Он был одним из первых пользователей логарифмов. И Кеплер внес вклад, как реальный, так и причудливый, в теорию многогранников.
Кеплер родился 27 декабря 1571 г. в маленьком городке Вайль-дер-Штадт, земля Вюртемберг, Священная Римская империя; ныне он находится в Германии. Жизнь его складывалась очень трудно: болезненный ребенок, выросший в неблагополучной семье, подвергался преследованиям на религиозной почве; его первая жена и любимый сын умерли от оспы, мать обвинили в колдовстве, а скончался он в возрасте 58 лет на пути к императору в надежде получить хотя бы часть жалованья. Несмотря на эти трудности, Кеплер был глубоко религиозным человеком. Он собирался стать лютеранским пастором, но в двадцать три года ушел из семинарии ради должности преподавателя математики и астрономии. Религиозные верования были очень важны для него, и, как видно из его сочинений, он часто черпал в них вдохновение для научной работы. Один из биографов Кеплера, Артур Кёстлер, писал: «Это сосуществование мистического и эмпирического, необузданного полета мысли и упорных, терпеливых исследований оставалось… главной особенностью Кеплера с юных лет до старости»47.
Рис. 6.2. Усеченный икосаэдр и пентакисдодекаэдр Леонардо да Винчи из иллюстраций к «Божественной пропорции»
Кеплер верил, что Бог создал мир, исполненный математической красоты. Конечно, Кеплер был уверен, что существование всего пяти правильных многогранников должно иметь какой-то важный смысл; очевидно, они должны быть отражены в устройстве Вселенной. Кёстлер писал: «Для Кеплера ложная вера в пять идеальных тел была не мимолетной причудой, а оставалась с ним, в измененном виде, до конца жизни, со всеми признаками параноидного бреда; и тем не менее она играла роль vigor motrix, питая его бессмертные достижения»48.
Идея первой модели Солнечной системы пришла Кеплеру 9 июля 1595 года, когда он читал лекцию в заполненном студентами зале. В то время все считали правильной геоцентрическую (с Землей в качестве центра) модель Птолемея. За полвека до этого Николай Коперник (1473–1543) приводил аргументы в пользу гелиоцентрической (с Солнцем в центре) модели, но, по различным причинам, большинство интеллектуалов ее отвергло.
Рис. 6.3. Мраморная инкрустация Уччелло (слева вверху), одна из интарсий Фра Джованни (справа вверху) и работы Венцеля Ямницера
Рис. 6.4. Иоганн Кеплер
В один прекрасный день, когда Кеплер чертил многоугольники, вписанные в окружности, его посетила мысль, что в этом, возможно, и состоит секрет орбит планет: что, если орбиты — это вложенные друг в друга окружности, вписанные в различные многоугольники, с Солнцем в центре? Проведя лето за скрупулезной проработкой деталей, он пришел к выводу, что эта модель Солнечной системы неправильна. Но он не отбросил ее целиком, а переработал и создал другую модель, которая нравилась ему больше. Новая модель была описана в его первой книге «Mysterium Cosmographicum» (Тайна мироздания), вышедшей в 1596 году49.
Кеплер осознал, что многоугольники и окружности — неподходящие объекты для модели Солнечной системы, он перешел в следующее измерение и стал рассматривать многогранники и сферы. Он считал, что существование пяти платоновых тел должно быть как-то связано с существованием шести известных планет: Сатурна, Юпитера, Марса, Земли, Венеры и Меркурия. Он утверждал, что орбиты планет соотносятся с вложенностью пяти платоновых тел, вписанных в сферы. Возьмем сферу такую, что орбита самой дальней планеты, Сатурна, проходит по ее экватору. Впишем в эту сферу куб, а в куб другую сферу. По экватору этой сферы, полагал Кеплер, проходит орбита Юпитера (см. рис. 6.5). Продолжая таким же образом (тетраэдр, сфера, додекаэдр, сфера, икосаэдр, сфера, октаэдр, сфера), мы найдем орбиты всех шести планет. Кеплер писал:
То была причина и следствие моих трудов. Невозможно выразить словами, сколь велика была моя радость от этого открытия. Я больше не жалел о потраченном времени. Денно и нощно был я поглощен вычислениями, дабы понять, согласуется ли эта идея с коперниковыми орбитами или мою радость развеет ветер. Через несколько дней я убедился, что все правильно, и наблюдал, как одно тело за другим занимает свое законное место среди планет50.
Рис. 6.5. Ранние представления Кеплера о Солнечной системе (из «Тайны мироздания»)
Таким образом, Кеплер стал профессиональным астрономом, который публично, в печати выступил в поддержку модели Коперника. В то время даже Галилей (1564–1642), который был старше Кеплера на шесть лет, хранил молчание по этому поводу.
Первая часть «Тайны мироздания» наполнена мистикой — Кеплер погружается в пучины астрологии, нумерологии и символики. Он приводит подробные ненаучные обоснования правильности своей модели Солнечной системы. Он видит очень четкую иерархию платоновых тел. Например, он делит их на первичные (тетраэдр, куб и додекаэдр) и вторичные (октаэдр и икосаэдр). Первичные отличаются тем, что в каждой вершине сходится три грани. Он утверждает, что «включать — более совершенное отношение», чем быть включенным51; в его модели первичные тела являются внешними многогранниками, а вторичные — внутренними, причем орбита Земли расположена посередине между двумя классами.
Но во второй части книги он делает резкий поворот в сторону научной аргументации, подкрепленной астрономическими данными. Чтобы согласовать теорию с данными, он внес несколько изменений в модель. Он еще не знал, что орбиты планет эллиптические, но знал, что они не круговые. Поэтому, чтобы вместить планеты, сферы в его модели должны были иметь некоторую толщину; даже если планета обращается не по круговой орбите, она все равно остается внутри сферической оболочки. Модель Кеплера на удивление точна, однако он понимал, что данные все-таки не идеально укладываются в модель (особенно орбиты Юпитера и Меркурия). Поэтому он изыскивал различные способы объяснить расхождения, например недоверие к используемым данным (полученным от Коперника).
Впоследствии Кеплер убедился, что его прототип Солнечной системы неправилен. Он писал: «Должен признать, что глава астрономии отсечена»52. Просеяв гигантский объем данных об орбите Марса, доставшихся ему от астронома Тихо Браге (1546–1601), Кеплер вывел истинное движение планет. Совершая один из величайших подвигов в истории науки, он использовал эти данные для открытия трех законов движения планет (первые два в 1609-м, третий в 1619 году). Через тридцать лет после его смерти эти законы были математически подтверждены Исааком Ньютоном. Интересно, что, несмотря на ложные утверждения в «Тайне мироздания», многие из этих безумных идей содержали зерно истины. Некоторые из важнейших научных достижений Кеплера восходят к, казалось бы, бессмысленным идеям, изложенным в этой книге.
Главный вклад в теорию многогранников Кеплер внес уже в конце своей карьеры в работе «Harmonice Mundi» (Гармония мира), опубликованной в 1619 году53. Этот трактат состоит из пяти частей, первые две посвящены математике. Он заново открыл все тринадцать архимедовых тел и доказал, что других не существует. Он представил класс многогранников, названных антипризмами. Он также обнаружил два звездных многогранника, которые сегодня известны под названиями большой и малый звездный додекаэдр (рис. 6.6). Он называл многогранники этого вида эхин, что означает морской еж. Позже мы вернемся к этим звездным многогранникам и увидим, что их можно рассматривать как правильные многогранники и что для них формула Эйлера не имеет места.
Даже на этом, позднем этапе своей карьеры Кеплера очаровывали платоновы тела. Он был приверженцем греческой теории четырех элементов и платоновой теории, утверждавшей, что элементы состоят из платоновых тел. Следует иметь в виду, что «Гармония мира» была опубликована за 42 года до революционного текста Бойля «Скептический химик». В «Гармонии мира» Кеплер использовал идеи Платона и Аристотеля наряду с собственными ненаучными аргументами, чтобы обосновать связь четырех элементов с платоновыми телами.
Рис. 6.6. Рисунки звездных многогранников, выполненные Кеплером (из книги «Гармония мира»)
Он утверждал, что поскольку куб можно положить на стол, так что его нелегко вывести из равновесия, он представляет собой наиболее устойчивое из платоновых тел; стало быть, это должна быть земля. Октаэдр, удерживаемый двумя пальцами, легко вращается; следовательно, он самый неустойчивый и должен соответствовать воздуху. Тетраэдр занимает наименьший объем при заданной площади поверхности, поэтому он самый сухой из пяти, т. е. соответствует огню. А икосаэдр занимает наибольший объем при заданной площади поверхности, стало быть, он самый мокрый и должен быть водой. Кеплер видел связь между двенадцатью гранями додекаэдра и двенадцатью знаками Зодиака, поэтому он утверждал, что додекаэдр является образом Вселенной. Соответствие между элементами и платоновыми телами можно наблюдать на знаменитой иллюстрации Кеплера, воспроизведенной на рис. 6.7.
Рис. 6.7. Рисунки платоновых тел, выполненные Кеплером (из «Гармонии мира»)
В «Гармонии мира» мы снова видим раздвоение между склонностью Кеплера к мистике и его блестящим научным мышлением. В этой работе он высказывает ошибочные утверждения относительно атомистической теории, но также делает важное наблюдение о платоновых телах. Он обратил внимание на антисимметричную связь между октаэдром и кубом и между додекаэдром и икосаэдром, а также на автосимметрию тетраэдра. Из табл. 6.1 мы видим, что у куба и октаэдра по 12 ребер. Количество граней куба (6) равно количеству вершин октаэдра, а количество вершин куба (8) равно количеству граней октаэдра. Такое же зеркальное соотношение существует между додекаэдром и икосаэдром: у обоих по 30 ребер, у икосаэдра 20 граней, а у додекаэдра 20 вершин, у икосаэдра 12 вершин, а у додекаэдра 12 граней. Для тетраэдра нет парного правильного многогранника, но зато у него столько же граней, сколько вершин, поэтому он образует пару с самим собой.
Кеплер предложил физическую интерпретацию этой антисимметрии. Возьмем какой-нибудь правильный многогранник, например куб. Поместим новую вершину в центр каждой грани. Эти восемь точек образуют вершины октаэдра. Полученный многогранник называется двойственным исходному. На рис. 6.8 мы видим иллюстрацию Кеплера, показывающую, что октаэдр двойствен кубу. Заметим, что каждая грань куба соответствует вершине октаэдра, поэтому число граней куба равно числу вершин октаэдра. Присмотревшись более внимательно, мы увидим, что каждому ребру октаэдра можно сопоставить перпендикулярное ему ребро куба, поэтому оба многогранника имеют одинаковое число ребер. Кроме того, каждой вершине куба соответствует грань октаэдра, поэтому число тех и других одинаково. Таким способом мы устанавливаем зеркальную связь, показанную в табл. 6.1.
Таблица 6.1. Количество вершин, ребер и граней платоновых тел
Кеплер также показал, что икосаэдр двойствен додекаэдру, а тетраэдр — самому себе (см. рис. 6.8). Хотя Кеплер знал, что двойственность — взаимное отношение (куб можно вписать в октаэдр, а додекаэдр в икосаэдр), он не показал этого. Это не укладывалось в иерархию. Поскольку он верил, что отношение «включает» более совершенно, чем «быть включенным», то показал только, что первичные тела включают вторичные.
Рис. 6.8. Изображение двойственного многогранника, выполненное Кеплером (из «Гармонии мира»)
Верный своей манере, Кеплер не мог не поделиться собственной оригинальной интерпретацией этого математического наблюдения. Он приписал телам пол и воспользовался двойственностью для указания на половую совместимость. Куб и додекаэдр (оба доминирующие первичные тела) были мужского пола и включали женские октаэдр и икосаэдр (вторичные тела). Тетраэдр был гермафродитом, поскольку включал сам себя. Грани и вершины были половыми характеристиками, потому что именно в этих местах тела соприкасались. Кеплер писал:
Однако существует два достойных упоминания, так сказать, брака, получаемых сочетанием фигур, взятых из каждого класса: мужчин, куба и додекаэдра, из класса первичных тел, с женщинами, октаэдром и икосаэдром, из класса вторичных тел. Помимо них, существует фигура, символизирующая целибат, или гермафродита, — тетраэдр, поскольку он вписан сам в себя, подобно тому, как женские фигуры вписаны и, так сказать, подчинены мужским, а признаки их женского пола расположены напротив признаков мужского пола, иными словами, углы противостоят плоским граням54.
Производители игрушек творчески воспользовались свойствами правильных и неправильных многогранников и выпустили многочисленные разновидности экзотических игральных костей. Один такой изобретательный фабрикант даже воспользовался двойственностью правильных многогранников и сделал симметричную круглую кость! На поверхности сферы нарисованы очки, как на кубе (см. рис. 6.9). Во внутренней полости размещен двойственный кубу октаэдр. Тяжелый шарик перекатывается внутри октаэдра, пока не остановится в одной из его вершин. Благодаря весу шарика одна из «граней» кости после остановки оказывается сверху.
Рис. 6.9. Круглая игральная кость
Можно обобщить определение двойственности на неправильные многогранники, хотя определение оказывается более сложным. Тема двойственности постоянно возникает в математике. Мы часто создаем двойственные пары, поменяв местами какую-то ключевую величину. В случае многогранников обращается размерность: нульмерные вершины заменяются двумерными гранями, а двумерные грани — нульмерными вершинами. В других случаях местами меняются верх и низ, положительное и отрицательное и т. д. Иногда объект, больше всего похожий на данный, оказывается его точной противоположностью. Мы вернемся к понятию двойственности в главе 23.
К XVII веку математика стала в Европе академической дисциплиной. Длительный бесплодный период подошел к концу. Многогранники, вновь введенные в обиход художниками, опять оказались предметом математических исследований. В главе 9 мы увидим, что приблизительно в 1630 году Декарт открыл важные свойства многогранников, но мир узнал об этом только в 1860 году. Первого за две тысячи лет заметного вклада в теорию многогранников пришлось ждать до следующего столетия, когда Эйлер сделал свое блистательное открытие.
Приложения к главе
46. Simmons (1992), 69.
47. Koestler (1963), 262.
48. Там же, 252.
49. Kepler (1596), английский перевод Kepler (1981).
50. Kepler (1596), quoted in Gingerich (1973).
51. Kepler (1981), 107.
52. Quoted in Martens (2000), 146.
53. Kepler (1938), английский перевод Kepler (1997).
54. Quoted in Emmer (1993).