Введение

Философия записана в этой огромной книге, которая постоянно открыта перед нашими глазами (я говорю о Вселенной), но чтобы её понять, надо научиться понимать язык и условные знаки, которыми она написана. Она написана на языке математики, а её буквы — треугольники, круги и другие геометрические фигуры; без них невозможно понять ни слова, без них — тщетное блуждание по темному лабиринту.

Галилео Галилей2


Все они прошли мимо нее. Древние греки — такие светила математики, как Пифагор, Теэтет, Платон, Евклид и Архимед, одержимые многогранниками, — прошли мимо. Иоганн Кеплер, великий астроном, так восторгавшийся красотой многогранников, что положил их в основу ранней модели Солнечной системы, прошел мимо. В своем исследовании многогранников математик и философ Рене Декарт находился всего в нескольких логических шагах от ее открытия, но тоже прошел мимо. Все эти и многие другие математики не заметили связи такой простой, что ее можно объяснить любому школьнику, и вместе с тем настолько фундаментальной, что она вошла в плоть и кровь современной математики.

А великий швейцарский математик Леонард Эйлер (1707–1783) мимо не прошел. 14 ноября 1750 г. в письме к своему другу Христиану Гольдбаху (1690–1764), занимавшемуся теорией чисел, Эйлер писал: «Меня поражает, что такое общее свойство стереометрии (геометрии пространственных тел) до сих пор, насколько мне известно, никем не было замечено»3. В этом письме Эйлер описал свое наблюдение, а годом позже представил доказательство. Наблюдение настолько фундаментальное и важное, что теперь оно называется формулой Эйлера для многогранников.

Многогранником называется трехмерный объект наподобие изображенных на рис. I.1. Он состоит из многоугольных граней. Каждая пара соседних граней имеет общий прямолинейный отрезок, называемый ребром, а соседние ребра пересекаются в угловой точке, называемой вершиной. Эйлер заметил, что количества вершин, ребер и граней (V, E, F) всегда связаны простым и элегантным арифметическим соотношением:

V — E + F = 2.

Рис. I.1. Куб и футбольный мяч (усеченный икосаэдр) удовлетворяют формуле Эйлера


Самым известным многогранником, наверное, является куб. Нетрудно посчитать, что у него шесть граней: по одному квадрату сверху и снизу и четыре по бокам. Границы этих квадратов — ребра куба. Всего их насчитывается двенадцать: по четыре сверху и снизу и четыре вертикальных по бокам. Четыре верхних и четыре нижних угла дают нам восемь вершин. Таким образом, для куба имеем V = 8, E = 12, F = 6 и, конечно же,

8 — 12 + 6 = 2,

как и должно быть. Для многогранника на рис. I.1, напоминающего футбольный мяч, подсчет сложнее, но можно убедиться, что он имеет 32 грани (12 пятиугольных и 20 шестиугольных), 90 ребер и 60 вершин. И снова

60 — 90 + 32 = 2.

Но открытие Эйлера — только начало истории. Помимо работы по многогранникам, Эйлер создал новую дисциплину analysis situs, которая сегодня известна под названием топологии. Геометрия изучает жесткие объекты. Геометров интересует измерение таких величин, как площади, углы, объемы и длины. Топология, получившая популярное прозвище «резиновая геометрия», изучает эластичные фигуры. Объект внимания тополога не обязан быть жесткой геометрической фигурой. Топологов интересует связность, наличие дырок и скрученность. Когда клоун скручивает из надувного шара собаку, его топология не меняется, но геометрические тела совершенно различны. Но когда ребенок протыкает воздушный шарик карандашом, он оставляет в нем зияющую дыру, в результате чего топология изменяется. На рис. I.2 мы видим три примера топологических поверхностей: сфера, тор в виде бублика и перекрученная лента Мёбиуса.

Исследователи, занимавшиеся новой наукой, топологией, были очарованы формулой Эйлера и попытались применить ее к топологическим поверхностям. Возник очевидный вопрос: где расположены вершины, ребра и грани на топологической поверхности? Топологи отбросили жесткие ограничения, налагаемые геометрами, и допустили искривленные грани и ребра. На рис. I.3 мы видим разбиение сферы на «прямоугольные» и «треугольные» области. Это разбиение образовано в результате проведения 12 меридианов, сходящихся в полюсах, и 7 параллелей. На этом изображении глобуса имеется 72 криволинейные прямоугольные грани и 24 криволинейные треугольные грани (последние расположены вблизи полюсов) — всего 96 граней. Имеется также 180 ребер и 86 вершин. Стало быть, как и в случае многогранников,

V — E + F = 86 — 180 + 96 = 2.

Рис. I.2. Топологические поверхности: сфера, тор и лента Мёбиуса

Рис. I.3. Два разбиения сферы


Мяч, которым играли на Всемирном чемпионате по футболу в 2006 году, состоял из шести четырехсторонних кусков в форме песочных часов и восьми бесформенных шестиугольных кусков (рис. I.3). Он также удовлетворяет формуле Эйлера (V = 24, E = 36, F = 14).

Возникает искушение сделать вывод, что формула Эйлера справедлива для любой топологической поверхности. Однако если разбить тор на прямоугольные грани, как на рис. I.4, то получится неожиданный результат. Разбиение образовано проведением двух окружностей вокруг центрального отверстия тора и четырех окружностей на самой кольцевой трубке. Оно состоит из 8 четырехсторонних граней, 16 ребер и 8 вершин. При этом

V — E + F = 8 — 16 + 8 = 0,

а не 2, как предсказывает формула Эйлера.

Рис. I.4. Разбиение тора


И если бы мы построили другое разбиение тора, то обнаружили бы, что эта знакопеременная сумма по-прежнему равна нулю. Поэтому для тора мы получаем новую формулу Эйлера:

V — E + F = 0.

Можно доказать, что у любой топологической поверхности есть «своя» формула Эйлера. Не важно, на сколько граней разбить поверхность сферы — на 6 или на 1600, все равно формула Эйлера всегда будет давать 2. И точно так же, если применить формулу Эйлера к любому разбиению тора, получится 0. Это число может служить характеристикой поверхности, подобно тому, как количество колес характеризует транспортные средства. У любой легковой машины четыре колеса, у тягача с прицепом восемнадцать, а у мотоцикла два колеса. Если у транспортного средства не четыре колеса, то это не легковая машина, а если у него не два колеса, то это не мотоцикл. Аналогично, если V — E + F не равно 0, то поверхность топологически не эквивалентна тору.

Величина V — E + F внутренне связана с формой поверхности. Топологи говорят, что она является инвариантом поверхности. Из-за этого свойства инвариантности величина V — E + F называется эйлеровой характеристикой поверхности. Эйлерова характеристика сферы равна 2, а тора — 0.

В данный момент тот факт, что у каждой поверхности своя эйлерова характеристика, может показаться не более чем математическим курьезом, над которым забавно поразмышлять, держа в руках футбольный мяч или глядя на геодезический купол — мол, «круто же». Но, конечно же, это далеко не так. Как мы увидим, эйлерова характеристика — незаменимый инструмент при изучении многогранников, не говоря уже о топологии, геометрии, теории графов и динамических системах, и у нее есть весьма элегантные и неожиданные применения.

Математический узел, показанный на рис. I.5, похож на спутанную веревочную петлю. Два узла считаются эквивалентными, если один можно деформировать в другой, не разрезая и не склеивая заново веревку. При некоторой изобретательности мы можем использовать эйлерову характеристику также для различения узлов и доказать, что два узла на рис. I.5 не эквивалентны.

Рис. I.5. Это один и тот же узел?


На рис. I.6 показана карта направления ветров на поверхности Земли. Рядом с побережьем Чили мы видим точку, где ветра нет. Она расположена в центре тайфуна, вращающегося по часовой стрелке. Можно доказать, что на поверхности Земли всегда существует по крайней мере одна точка, в которой нет ветра. И это вытекает не из знания метеорологии, а из чисто топологических соображений. Существование такой точки затишья следует из факта, который математики называют теоремой о причесывании ежа[1]. Неформально говоря, невозможно причесать свернувшегося клубком ежа, так чтобы у него не торчала ни одна иголка. В главе 19 мы увидим, как эйлерова характеристика позволяет доказать это смелое утверждение.

Рис. I.6. Всегда ли на поверхности Земли существует точка, в которой не дует ветер?


На рис. I.7 изображен многоугольник, все вершины которого находятся в узлах равномерной сетки, отстоящих друг от друга на единичное расстояние. Удивительно, но мы можем точно вычислить площадь этого многоугольника, просто подсчитав количество точек. В главе 13 мы увидим, что формула Эйлера позволяет вывести элегантную формулу, выражающую площадь многоугольника через количество точек на его границе (B) и количество точек внутри (I):

Площадь = I + B/2 — 1.

Рис. I.7. Можно ли определить площадь закрашенного многоугольника путем подсчета точек?


Согласно этой формуле, площадь показанного многоугольника равна 5 + 10/2 — 1 = 9.

Существует старая и интересная задача о том, сколько цветов необходимо для раскрашивания карты таким образом, что любые два области, имеющие общую границу, раскрашены в разные цвета. Возьмите чистую карту США и попробуйте раскрасить ее, используя как можно меньше цветных карандашей. Очень скоро вы обнаружите, что для большей части карты достаточно всего трех карандашей, но, чтобы завершить краску, понадобится четвертый цвет. Например, штат Невада окружен нечетным числом штатов, поэтому для их раскраски нужно три карандаша, но тогда для самой Невады потребуется четвертый карандаш (рис. I.8). При умном подходе можно обойтись без пятого карандаша — четырех цветов достаточно для раскраски всей карты США. Уже давно предполагалось, что любую карту можно раскрасить в четыре цвета или меньше. Эта знаменитая гипотеза, которая никак не поддавалась усилиям математиков, получила название проблемы четырех красок. В главе 14 мы подробно расскажем эту увлекательную историю; в 1976 году она закончилась вызвавшим много споров доказательством, в котором эйлерова характеристика сыграла ключевую роль.

Графит и алмаз — два материала, состоящие только из атомов углерода. В 1985 года трое ученых — Роберт Кёрл, Ричард Смолли и Харольд Крото — шокировали научное сообщество, открыв новый класс молекул, состоящих только из углерода. Они назвали их фуллеренами в честь архитектора Бакминстера Фуллера, изобретателя геодезического купола (рис. I.9). Такое название было выбрано, потому что фуллерены представляют собой большие молекулы в форме многогранников, напоминающих эту конструкцию. За открытие фуллеренов все трое были удостоены Нобелевской премии по химии за 1996 год. В фуллерене каждый атом углерода связан ровно с тремя соседями, так что образуются пятиугольные и шестиугольные кольца атомов. Первоначально Кёрл, Смолли и Крото обнаружили фуллерены, составленные из 60 и 70 атомов углерода, но затем были открыты и другие. Самую красивую молекулу фуллерена, C60, имеющую форму футбольного мяча, она назвали бакминстерфуллереном. Поразительно, что, ничего не зная о химии, а располагая только формулой Эйлера, мы можем утверждать, что некоторые конфигурации атомов углерода не могут встречаться в фуллеренах. Например, фуллерен любого размера должен иметь ровно 12 пятиугольных углеродных колец, хотя количество шестиугольных колец может разниться.

Рис. I.8. Можно ли раскрасить карту США в четыре цвета?

Рис. I.9. Молекула бакминстерфуллерена С60


Тысячи лет люди рисуют красивые и манящие правильные многогранники, гранями которых являются правильные многоугольники (рис. I.10). Греки знали пять таких тел, Платон включил их в свою атомистическую теорию, а Кеплер положил их в основу ранней модели Солнечной системы. Тайна, окружавшая эти пять многогранников, отчасти связана с тем, что их так мало, — больше ни один многогранник не удовлетворяет строгим критериям правильности. Одно из самых элегантных применений формулы Эйлера — очень короткое доказательство этого факта.

Рис. I.10. Пять правильных многогранников


Несмотря на свою важность и красоту, формула Эйлера практически неизвестна широкой публике. Ее нет в стандартном школьном курсе математики. Некоторые старшеклассники знают формулу Эйлера, но большая часть студентов, изучающих математику, встречаются с ней только в колледже.

Математическая слава — странная вещь. Некоторые теоремы хорошо известны, потому что вколочены в головы школьников: теорема Пифагора, формула корней квадратного уравнения, основная теорема математического анализа. Другие результаты оказываются на слуху, поскольку решают знаменитую задачу. Великая теорема Ферма оставалась недоказанной в течение трехсот лет, пока в 1993 году Эндрю Уайлс не удивил мир своим доказательством. Проблема четырех красок была поставлена в 1853 году, а доказана Кеннетом Аппелем и Вольфгангом Хакеном в 1976 году. Знаменитая гипотеза Пуанкаре была выдвинута в 1904 году и вошла в число семи проблем тысячелетия по версии Института математики Клэя, который счел их настолько важными, что математику, решившему любую из них, была обещана награда в размере миллиона долларов. Эта сумма была присуждена Григорию Перельману, предложившему доказательство гипотезы Пуанкаре в 2002 году. Некоторые математические факты хорошо известны в силу своего междисциплинарного характера (последовательность чисел Фибоначчи в природе) или исторической значимости (бесконечность множества простых чисел, иррациональность числа π).

Формула Эйлера должна быть известна так же хорошо, как эти великие теоремы. У нее красочная история, а в теорию внесли вклад многие величайшие математики. Это глубокая теорема, и понимание всей ее глубины только возрастает по мере развития математики.

Книга, которую вы держите в руках, — рассказ о красивой теореме Эйлера. Мы проследим ее историю и покажем, как она перебрасывает мост между многогранниками древних греков и современной топологией. Мы расскажем о многих обличьях, под которыми скрывается формула Эйлера в геометрии, топологии и динамических системах. Мы также приведем примеры теорем, доказательства которых основаны на формуле Эйлера. Мы увидим, почему эта долгое время остававшаяся незамеченной формула стала одной из самых уважаемых теорем в математике.


Приложения к главе

2. Quoted in Machamer (1998).


3. Juskevic and Winter (1965), 333.


Загрузка...