Очень часто повторяют, что Геометрия — это искусство хороших рассуждений о плохо нарисованных фигурах; и все же эти фигуры, чтобы не вводить нас в заблуждение, должны удовлетворять некоторым свойствам; пропорции могут быть сильно искажены, но относительные положения различных частей нарушать не следует.
Один из самых часто задаваемых вопросов в математике: одинаковы ли два математических объекта X и Y? В разных контекстах слово «одинаковые» может означать разные вещи. Часто одинаковые — то же, что равные, например выражение 5 4 + 6 — 23 и число 18 или многочлены x2 + 3x + 2 и (x + 2)(x + 1). В других случаях одинаковость и равенство — разные вещи. Для моряка, ориентирующегося по компасу, два угла одинаковы, если они отличаются на 360° (т. е. 30° — то же, что 390°). Геометр может сказать, что два треугольника одинаковы, если они конгруэнтны или, быть может, подобны.
В топологии критерии одинаковости слабее, чем в геометрии. Тут в игру вступает аналогия с резиновым листом. Интуитивно, если одну фигуру можно непрерывно деформировать в другую, то они одинаковы. Сгибание, растяжение, перекручивание и сминание не изменяют топологию фигуры. Например, окружность на рис. 17.1 одинакова с клубком справа от нее. С другой стороны, прокалывание фигуры, разрезание ее или приклеивание к себе самой, скорее всего, даст топологически отличную фигуру. Окружность — не то же самое, что две склеенные окружности, образующие восьмерку.
В первой половине XIX века математики приложили много усилий для классификации многогранников, удовлетворяющих формуле Эйлера, — так называемых эйлеровых многогранников. Мы пришли к расплывчатому пониманию того, что все многогранники, «похожие на сферу», являются эйлеровыми, а странные исключения Люилье и Гесселя таковыми не являются. Оказывается, что формула Эйлера применима к любому многограннику, топологически эквивалентному сфере. Куб, любое платоново или архимедово тело и даже некоторые невыпуклые многогранники можно деформировать в сферическую поверхность (рис. 17.2). Неэйлеровы многогранники, например, образованные соединением двух многогранников вдоль ребра или имеющие форму тора, топологически не эквивалентны сфере.
Рис. 17.1 Этот клубок топологически эквивалентен окружности, а восьмерка неэквивалентна
Рис. 17.2. Многогранники, топологически эквивалентные и неэквивалентные сфере
Может показаться, что изучение этих фигур интуитивно очевидно, но поразительно, насколько часто мы сталкиваемся с результатами, противоречащими интуиции. Например, на рис. 17.3 мы начали с двойного тора, подвешенного на веревке, проходящей через одну из его дырок. Путем топологических манипуляций (без разрезания или склеивания!) мы приходим к результату, который поначалу кажется невозможным, — двойному тору, продетому за обе дырки.
В главе 16 мы видели разницу между внешней и внутренней размерностями. Подобную терминологию можно было использовать и в этом контексте. Примеры, приведенные выше в этой главе, обладают тем, что можно было бы назвать внешней топологией, поскольку одну фигуру можно деформировать в другую в трехмерном пространстве. Математики называют две фигуры с одинаковой внешней топологией изотопическими. Изотопия — вроде бы подходящий выбор для определения топологической «одинаковости», но в действительности топологи хотят больше свободы. Нам нужно менее ограничительное определение эквивалентности.
Рис. 17.3. Фокус с двойным тором на бельевой веревке
Чтобы две фигуры были топологически эквивалентными, они должны иметь одинаковую внутреннюю топологию. Если две поверхности эквивалентны, то каким бы умным ни был обитающий на поверхности муравей, он не сможет отличить одну от другой, не покидая поверхности. Можно найти две эквивалентные поверхности такие, что одну невозможно деформировать в другую. Таким образом, аналогия на основе резинового листа несовершенна.
Чтобы понять это новое определение, придется вернуться к разрезанию и склеиванию. Хотя обычно разрезание и склеивание действительно изменяют топологию поверхности, это верно не всегда. Есть важное исключение: разрезать фигуру, а затем склеить отдельные куски, так чтобы разрезы точно совпали. В этом случае топология не изменится. Если разрезать тор поперек, так чтобы получился цилиндр, затем завязать цилиндр в узел и снова склеить (как на рис. 17.4), то получившаяся фигура топологически по-прежнему эквивалентна тору. Заметим, что завязанный в узел тор нельзя получить из исходного путем деформаций в трехмерном пространстве — эти фигуры не изотопические. Внутренняя топология одинакова, но внешняя различается. С другой стороны, никаким способом невозможно разрезать, деформировать и снова склеить тор, так чтобы получился двойной тор. Достаточно умный муравей сможет доказать, что они топологически различны (и очень скоро мы увидим, как именно).
Точное определение топологической «одинаковости» выходит за рамки этой книги. По существу, два топологических объекта одинаковы, если существует взаимно однозначное соответствие между их точками, сохраняющее близость, — близким точкам одного объекта соответствуют близкие точки другого. Это понятие «одинаковости» было введено Мёбиусом, который называл соответствие «элементарной связью»150. В настоящее время такое соответствие называют гомеоморфизмом. Таким образом, на языке топологов два объекта одинаковы, если они гомеоморфны.
Рис. 17.4. Фигуры, топологически эквивалентные и неэквивалентные тору
Рассмотрим три петли из фокуса с афганскими лентами в главе 16. Одна не перекручена вовсе, вторая перекручена один раз, а третья — два раза. Очевидно, что внешняя топология всех трех различна. Но, согласно нашему эвристическому правилу, третья фигура гомеоморфна неперекрученной цилиндрической ленте, поскольку если разрезать цилиндр и дважды перекрутить его, то края разрезов можно будет правильно совместить перед склеиванием (рис. 17.5). Будем называть третью фигуру скрученным цилиндром. Для ленты Мёбиуса это не так. Если разрезать цилиндр и перекрутить его один раз, то края разреза нельзя будет совместить правильно. Поэтому, несмотря на поверхностное сходство между лентой Мёбиуса и скрученным цилиндром, они негомеоморфны.
Рис. 17.5. Дважды перекрученная полоса гомеоморфна цилиндру, а перекрученная один раз — нет
Хотя интуиция подсказывает, что лента Мёбиуса негомеоморфна цилиндру (скрученному или нет), доказательства мы не дали. Да, это кажется маловероятным, но, быть может, существует хитрый способ разрезания, который перевел бы одну фигуру в другую. Фокус с двойным тором на веревке уже научил нас, что не всегда можно доверять внутреннему чутью, но в данном случае интуиция не подвела — фигуры негомеоморфны.
Топологическим инвариантом называется ассоциированное с поверхностью свойство или математическая сущность, которая зависит только от топологии поверхности. Топологический инвариант может быть числом, например числом краев. если две поверхности гомеоморфны, то число краев у них должно быть одинаково. На практике это утверждение полезнее в контрапозитивной форме: если у двух поверхностей разное число краев, то они не могут быть гомеоморфными. Поскольку край цилиндра состоит из двух компонент, а край ленты Мёбиуса — из одной, то они негомеоморфны.
Еще одним топологическим инвариантом является внутренняя размерность: она позволяет отличить сферу (двумерную поверхность) от окружности (одномерной). Мы продолжим обсуждение размерности в главе 22.
Топологическим инвариантом, а точнее топологическим свойством, является также ориентируемость. Две топологически одинаковые поверхности либо обе ориентируемые, либо обе неориентируемые. По-другому то же самое можно выразить, сказав, что если одна поверхность ориентируемая, а другая нет, то они не могут быть гомеоморфными. Нетрудно видеть, что цилиндр и скрученный цилиндр ориентируемы, а лента Мёбиуса — нет.
Согласно нашим правилам разрезания и склеивания, полоска бумаги, перекрученная четное число раз и затем склеенная, топологически эквивалентна цилиндру, а перекрученная нечетное число раз — ленте Мёбиуса. Полоски с четным числом перекрутов ориентируемы, и их край состоит из двух компонент, а полоски с нечетным числом перекрутов неориентируемы, а их край состоит из одной компоненты, так что они гомеоморфны друг другу. Заметим, кстати, что у каждой перекрученной полоски есть зеркальный близнец. Перекручивать полоску перед склеиванием можно по часовой стрелке и против часовой стрелки.
Ориентируемость, размерность и количество компонент края — три важных топологических инварианта. Еще одним топологическим инвариантом, пожалуй, самым важным из всех, является величина V — E + F. Пусть дана поверхность S, разбитая на V вершин, E ребер и F граней (конечно, нужно по-прежнему избегать кольцеобразных граней). Определим эйлерову характеристику S как число V — E + F. Обычно эту величину обозначают греческой буквой хи: χ(S) = V — E + F.
Говоря, что эйлерова характеристика — топологический инвариант, мы имеем в виду, что у каждой поверхности своя формула Эйлера. Например, на сфере на рис. 17.6 имеется 62 вершины, 132 ребра и 72 грани, поэтому ее эйлерова характеристика равна
χ(сфера) = 62 — 132 + 72 = 2.
Как мы знаем, это верно для любого разбиения сферы или чего-то, гомеоморфного сфере.
Рис. 17.6. Разбиения сферы, тора и бутылки Клейна
У тора на рис. 17.6 имеется 8 вершин, 16 ребер и 8 граней, поэтому его эйлерова характеристика равна
χ(тор) = 8 — 16 + 8 = 0.
Аналогично у бутылки Клейна на рис. 17.6 8 вершин, 16 ребер и 8 граней, поэтому
χ(бутылка Клейна) = 8 — 16 + 8 = 0.
Доказательство того, что эйлерова характеристика — топологический инвариант, проводится в несколько шагов. Сначала нужно показать, что любую поверхность можно разбить на конечное число вершин, ребер и граней. То есть не существует поверхностей настолько странных, что для них не найдется конечного разбиения (именно здесь используется предположение о компактности, обсуждавшееся в главе 6, — у евклидовой плоскости и открытого единичного диска нет конечного разбиения, но они и не рассматриваются). В случае многогранника разбиение уже задано — это просто его вершины, ребра и грани. Произвольная поверхность не имеет встроенного разбиения. Как ни странно, первое доказательство того, что любую поверхность можно разбить на вершины, ребра и грани, появилось только в 1924 году151.
Далее мы должны доказать, что эйлерова характеристика не зависит от выбора разбиения. Нетрудно видеть, что при добавлении вершин и ребер в разбиение величина V — E + F не изменяется. Поэтому мы задаемся вопросом: если даны два разбиения P и P', то можно ли добавить в них вершины и ребра, так что оба разбиения будут иметь одинаковое количество вершин, ребер, треугольных граней, квадратных граней, пятиугольных граней и т. д. и их относительное расположение будет одинаково? Эта проблема была поставлена довольно рано и получила название Hauptvermutung — «основная гипотеза комбинаторной топологии». Доказана она была поздно — только в 1943 году152, — и, как мы увидим в главе 23, в многомерных пространствах дело обстоит не так просто. Поскольку основная гипотеза верна для любой поверхности, эйлерова характеристика не зависит от выбора разбиения.
Наконец, мы должны показать, что две гомеоморфные поверхности имеют одинаковую эйлерову характеристику. Если поверхности S и S' гомеоморфны и P — разбиение S, то, поскольку гомеоморфизм — взаимно однозначное соответствие между S и S', мы можем воспользоваться им, чтобы перенести разбиение P на S'. Очевидно, что χ(S) = χ(S'). Таким образом, мы дали набросок полного доказательства нашей теоремы — что эйлерова характеристика является топологическим инвариантом.
Одна из самых трудных проблем при изучении формулы Эйлера для многогранников — понять влияние «туннелей» на величину V — E + F. Люилье и Гессель утверждали, что если многогранник имеет g туннелей, то V — E + F = 2 — 2g. В современной терминологии это означает, что эйлерова характеристика равна 2 — 2g. Проблема в том, что они не определили понятие туннеля. Вместо туннелей мы теперь используем для описания этих топологических особенностей ручки (в смысле главы 16). Интересно, что они обращали внимание на дырки в телах, а мы — на ручки, ограничивающие эти дырки.
Рассмотрим, как на эйлерову характеристику влияет добавление ручки к сфере. Мы должны вырезать из сферы два диска, вместо которых можно будет прикрепить ручки. С равным успехом вместо дисков можно взять треугольные грани (рис. 17.7). Если в разбиении нет треугольных граней, разобьем какую-нибудь грань на треугольники. Мы знаем, что эйлерова характеристика сферы равна 2, а ручка является цилиндром, так что ее эйлерова характеристика равна 0. Поэтому до разрезания и склеивания мы имеем
V — E + F = χ(сфера) + χ(ручка) = 2 + 0 = 2.
Рис. 17.7. Разбиения сферы, тора и бутылки Клейна
Вырезав два треугольника, мы теряем две грани. Приклеивая ручку к сфере, мы соединяем шесть пар ребер. Таким образом, двенадцать ребер превращаются в шесть. После разрезания и склеивания V и E уменьшаются на шесть, а F уменьшается на два, так что V — E + F уменьшается на два. Следовательно,
V — E + F = χ(сфера) + χ(ручка) — 2 = 2–2 = 0.
Разумеется, мы знаем, что сфера с ручкой — это тор, так что результат не вызывает удивления.
Такое же рассуждение показывает, что при добавлении каждой новой ручки эйлерова характеристика уменьшается на 2. Поэтому мы доказали наблюдение Люилье:
χ(сфера с g ручками) = 2 — 2g.
Аналогично можно вычислить, как влияет добавление скрещенного колпака. Напомним, что χ(скрещенный колпак) = χ(лента Мёбиуса) = 0. Поскольку краем любого скрещенного колпака является одна окружность, мы должны удалить из сферы только одну грань перед добавлением колпака. Снова предположим, что эта грань треугольная. Рассуждаем так же, как и выше: при добавлении скрещенного колпака количество ребер и вершин уменьшается на 3, а количество граней — на 1. Поэтому величина V — E + F уменьшается на 1. Следовательно, для сферы с одним скрещенным колпаком имеем
V — E + F = χ(сфера) + χ(скрещенный колпак) — 1 = 1.
Мы делаем вывод, что эйлерова характеристика проективной плоскости (сферы с одним скрещенным колпаком) равна 1. При добавлении c скрещенных колпаков получаем
χ(сфера с с скрещенными колпаками) = 2 — с.
Теперь мы знаем, как вычислить эйлерову характеристику любой поверхности, которую можно получить из сферы добавлением ручек и скрещенных колпаков. Остается важный вопрос: существуют ли поверхности, которые нельзя получить таким способом? Иначе говоря, можно ли описать все возможные поверхности в терминах ручек и скрещенных колпаков? На математическом жаргоне вопрос звучит так: можно ли классифицировать все поверхности?
В математике теоремы классификации обычно трудны или вообще невозможны. Неудивительно, что Эйлер так и не довел до конца свою классификацию многогранников. Но иногда классифицировать математические объекты удается. Ведь классифицировал же Теэтет все правильные многогранники, а Архимед — полуправильные многогранники.
Удивительно, что классифицировать поверхности (с краем и без края) можно. Каждая замкнутая поверхность гомеоморфна сфере с ручками или сфере со скрещенными колпаками. То есть каждая ориентируемая поверхность топологически эквивалентна тору с каким-то числом дырок, а каждая неориентируемая поверхность — сфере с одной или большим числом прикрепленных к ней лент Мёбиуса. На самом деле теорема даже сильнее. Если дана произвольная замкнутая поверхность, для которой известна эйлерова характеристика и ориентируема она или нет, то эту поверхность можно точно идентифицировать.
Например, предположим, что S — ориентируемая замкнутая поверхность с эйлеровой характеристикой –6. Поскольку S ориентируемая, мы знаем, что она гомеоморфна сфере рода g (сфере с g ручками), где –6 = χ(S) = 2 — 2g. Следовательно, S гомеоморфна тору с 4 дырками. Аналогично, если T — неориентируемая замкнутая поверхность с эйлеровой характеристикой –4, то она гомеоморфна сфере с с скрещенными колпаками, где –4 = χ(Т) = 2 — с. Иными словами, T гомеоморфна сфере с 6 скрещенными колпаками.
Похожая теорема классификации имеет место для поверхностей с краем. Любая поверхность с краем эквивалентна одной из этих стандартных поверхностей с одним или несколькими вырезанными дисками. Эйлерова характеристика, ориентируемость и число компонент края определяют поверхность однозначно. Единственной ориентируемой поверхностью с эйлеровой характеристикой 0 и двумя компонентами края является цилиндр, единственной неориентируемой поверхностью с эйлеровой характеристикой 0 и одной компонентой края — лента Мёбиуса и т. д. (см. табл. 17.1).
Таблица 7.1. Эйлерова характеристика, ориентируемость и число компонент края для различных поверхностей
Поверхность S | χ(S) | Ориентируемая | Компонент края |
---|---|---|---|
Сфера | 2 | Да | 0 |
Тор | 0 | Да | 0 |
Тор с двумя дырками | — 2 | Да | 0 |
Тор с g дырками | 2 — 2g | Да | 0 |
Диск | 1 | Да | 1 |
Цилиндр/кольцо | 0 | Да | 2 |
Бутылка Клейна | 0 | Нет | 0 |
Проективная плоскость | 1 | Нет | 0 |
Сфера с c скрещенными колпаками | 2–c | Нет | 0 |
Лента Мёбиуса | 0 | Нет | 1 |
В некотором смысле первым, кто начал процесс классификации (в 1850-х годах), был Бернхард Риман (1826–1866). Риман — один из самых знаменитых математиков XIX столетия. Он получил степень доктора в Гёттингенском университете под руководством Гаусса в самом конце карьеры последнего. В то время Гёттинген не был центром математики в Германии (Гаусс читал там только вводные курсы), поэтому над диссертацией Риман работал в основном в Берлинском университете.
Рис. 17.8. Бернхард Риман
Его блестящие способности проявились очень рано. На Гаусса, который нечасто давал лестные характеристики, огромное впечатление произвела первая публичная лекция Римана, которую тот прочел в 1854 году. Вот как Фрейденталь описывал эту лекцию:
Одно из выдающихся событий в истории математики: юный робкий Риман читает престарелому легендарному Гауссу, который не переживет следующую весну, лекцию о следствиях идей, которые старик, должно быть, считал своими и которые втайне лелеял. В. Вебер вспоминает, как был ошеломлен Гаусс и с каким необычайным чувством он по пути домой хвалил глубину мыслей Римана153.
Большинство работ Римана относятся к комплексному анализу — изучению комплексных чисел и комплексных функций. Комплексное число имеет вид a + bi, где a и b — вещественные, а i = √–1. Именно стремление полностью понять природу комплексных функций лежало в основе большей части его работ — по теории функций, геометрии, дифференциальным уравнениям в частных производных и топологии. Некоторые работы были опубликованы посмертно, в т. ч. трактат по интегрированию, идеи которого теперь входят в любой вводный курс математического анализа. Печально, что жизнь этого оригинального мыслителя оборвалась из-за туберкулеза всего в сорок лет.
Поверхностями Риман заинтересовался в связи с комплексным анализом, а не с теорией многогранников. Поскольку комплексные числа имеют две степени свободы (a и b), множество комплексных чисел образует двумерную плоскость — она выглядит как евклидова плоскость, только одна ось вещественная, а другая мнимая.
Риман изучал многозначные комплексные функции. Например, рассмотрим функцию f(z) = ∜z. Чему равно значение f(16)? Это должно быть число w, обладающее тем свойством, что w4 = 16. Нетрудно видеть, что в комплексной области таких чисел четыре: 2, –2, 2i, –2i. Следовательно, одному входу соответствует четыре выхода. Интерпретировать это можно, сказав, что график функции имеет несколько уровней, или ветвей. Риман остроумно решил рассматривать такой граф как поверхность, которая теперь называется римановой поверхностью. У римановых поверхностей весьма интересная топология, но они всегда ориентируемые.
Именно отсюда берут начало исследования Римана по топологии. Он ввел понятие рода поверхности (и связанное с ним понятие связности, которое мы обсудим в главе 22). Он сгруппировал ориентируемые поверхности по роду и интуитивно понял, что две топологически эквивалентные поверхности должны иметь одинаковый род154. Несмотря на эту группировку похожих поверхностей, он не увидел обратного: что две поверхности одного рода топологически эквивалентны.
Первым, кто сформулировал и доказал теорему классификации для ориентируемых поверхностей, был Мёбиус. В распоряжении Мёбиуса был инструмент, которого не было у Римана. В 1863 году он развил идею элементарной связи (то, что мы теперь называем гомеоморфизмом). Поэтому он мог с некоторой точностью сказать, что такое «две поверхности одинаковы». Мёбиус показал, что любая ориентируемая поверхность топологически эквивалентна одной из нормальных форм, показанных на рис. 17.9: сфере, тору, двойному тору и т. д.155
Рис. 17.9. Нормальные формы ориентируемых поверхностей по Мёбиусу
В 1866 году Камиль Жордан доказал, что любые две ориентируемые поверхности с краем гомеоморфны тогда и только тогда, когда имеют одинаковый род и одинаковое число компонент края156. Первую полную формулировку и доказательство теоремы классификации, в т. ч. для неориентируемых поверхностей, дал Дик в 1888 году157. Однако это было еще до современных определений поверхности и гомеоморфизма. Первое по-настоящему строгое доказательство теоремы классификации дали Макс Ден (1878–1952) и Поул Хеегард (1871–1948) в 1907 году158.
Мы не будем доказывать теорему классификации, но есть целый ряд вполне доступных изложений. Некоторые сводятся к построению поверхности для получения сферы с ручками и скрещенными колпаками. Например, доказательство ZIP («zero irrelevancy proof») Джона Конвея начинается с кучи треугольников — рассыпанных кусочков пазла триангулированной поверхности. По мере того как каждый новый треугольник помещается на расширяющуюся поверхность, она остается сферой с ручками, скрещенными колпаками и краем159. Другие доказательства построены ровно наоборот — начав с поверхности, мы вырезаем из нее цилиндры и ленты Мёбиуса (т. е. ручки и скрещенные колпаки) и на каждом шаге заполняем дырки дисками, пока не получится сфера.
На первый взгляд может показаться, что род ориентируемой поверхности определить легко — ведь это же просто сфера с ручками. Но не всегда поверхность выглядит как одна из нормальных форм Мёбиуса. Например, первая поверхность на рис. 17.10 — пример сферы с 4 ручками, она гомеоморфна тору с 4 дырками.
Рис. 17.10. Необычные поверхности
Теорема классификации говорит, что любая поверхность гомеоморфна сфере с ручками или сфере со скрещенными колпаками. Но ничего не говорит о комбинации того и другого. Например, вторая картинка на рис. 17.10 — сфера с одной ручкой и одним скрещенным колпаком. Как ее классифицировать? Согласно приведенным выше вычислениям, эйлерова характеристика сферы равна 2, добавление ручки увеличивает ее на 2, а добавление скрещенного колпака уменьшает на 1. Поэтому эйлерова характеристика этой поверхности равна –1. Из-за наличия скрещенного колпака мы знаем, что поверхность неориентируемая. По теореме классификации, она гомеоморфна сфере с тремя скрещенными колпаками, которая называется поверхностью Дика160.
Беглый взгляд на третью поверхность на рис. 17.10 показывает, что она двусторонняя (ориентируемая) и содержит только одну компоненту края. Интересно, что сам край образует так называемый трилистный узел. В следующей главе мы увидим, что любой узел можно получить как край ориентируемой поверхности с одной компонентой края. Построив разбиение этой поверхности и посчитав вершины, ребра и грани, мы найдем, что ее эйлерова характеристика равна –1. По теореме классификации поверхностей с краем, эта поверхность гомеоморфна тору с вырезанным диском.
И напоследок вернемся к большому икосаэдру и большому додекаэдру — многогранникам Кеплера-Пуансо с треугольными и пятиугольными гранями (см. главу 15). Хотя с первого взгляда этого не скажешь, они являются ориентируемыми поверхностями (пересекающимися в трехмерном пространстве). Эйлерова характеристика большого икосаэдра равна 2, поэтому он гомеоморфен сфере, а большого додекаэдра –6, поэтому он гомеоморфен тору с 4 дырками.
Приложения к главе
149. Poincare (1895).
150. Mobius (1863).
151. Rado (1925).
152. Papakyriakopoulos (1943).
153. Quoted in Freudenthal (1975).
154. Riemann (1851); Riemann (1857).
155. Mobius (1863).
156. Jordan (1866a).
157. Dyck (1888).
158. Dehn and Heegaard (1907).
159. Francis and Weeks (1999).
160. Там же.