Глава 26. «ЦАРЬ ФИЗИКОВ»

ТАК НЕРЕДКО НАЗЫВАЛИ гениального английского физика и химика Майкла Фарадея его признательные ученики и последователи.

Научная работа была жизненной потребностью Фарадея, этого потомственного пролетария-самоучки.

Поднявшись на вершины науки, Фарадей сохранил свою скромность и честность, любовь к труду и упорство. Он много раз рисковал своей жизнью во имя науки. Не раз при взрывах во время опытов он бывал контужен и получал ранения. Его учитель, знаменитый Дэви, поражался необычайной «живучести переплетчика».

Майкл Фарадей (1791–1867).

Когда Фарадей добился ожижения газа хлора, Дэви стал завистливо и недружелюбно смотреть на успехи своего лаборанта, не стеснялся приписывать себе некоторые работы Фарадея.

В 1824 году, несмотря на резкое сопротивление Дэви, который стал президентом Королевского общества, Майкл Фарадей за свои научные открытия был избран членом этого общества.

— Вы должны взять назад предложение об избрании, — заявил Дэви.

— Не я внес это предложение, а члены общества. Я не вправе взять его назад, — отвечал Фарадей.

— Тогда вы должны побудить к этому авторов предложения!

— Я уверен, они этого не сделают!

— В таком случае, я как президент сделаю это!

— Я убежден, что сэр Дэви сделает только то, что считает благородным! — закончил разговор побледневший Фарадей.

И все же Фарадей был избран. Слава и авторитет его росли. Уже через год он был назначен директором лаборатории, а еще через два года полностью заместил Дэви как профессор.

Тогда Дэви резко изменил свое отношение к бывшему своему помощнику и не переставал искренне радоваться успехам Фарадея и гордиться тем, что он «открыл» Фарадея.

Целый год Фарадей брал уроки ораторского искусства, чтобы научиться четко и ясно излагать свои мысли.

Фарадей требовал от своих друзей, чтобы они тщательно записывали все оговорки, неточности и ошибки, которые он делал, читая лекции. Ассистент должен был подойти и положить на кафедру плакат с надписью: «Медленней!» или «Пора!», когда Фарадей увлекался сверх меры.

— Нужно не только самому знать, но и уметь передавать свои знания другим! — неоднократно говорил Фарадей, когда его спрашивали, почему он так серьезно готовится к лекциям, которые им читались повторно.


* * *

29 августа 1831 года Фарадей, как и всегда, с самого утра пришел в лабораторию.

Лаборатория Фарадея в Королевском институте.

— Продолжите ли вы сегодня свои опыты? — спросил его ассистент.

— Да, Эндерсон, я буду продолжать все те же опыты. Я их веду десятый год… Эта цель неуклонно и всюду владеет мною. Нужно превратить магнетизм в электричество! Понимаете, Эндерсон? Я записал эту короткую фразу девять лет назад. Если провода с током проявляют магнитные свойства, то можно надеяться получить и электрический ток при помощи магнита. Однако мои многочисленные опыты пока этого не подтверждают…

Но в этот исторический день настойчивость Фарадея увенчалась полным успехом.

Присоединим намотанную на картонный цилиндр проволочную катушку (соленоид) к зажимам электроизмерительного прибора. Затем возьмем стержневой магнит, приблизим его конец к верхнему отверстию катушки и быстро опустим магнит внутрь катушки.

Стрелка прибора отклонится и снова вернется на место, как только прекратится движение магнита. Следовательно, в катушке возникал кратковременный ток.

Многократно опуская магнит в соленоид и вынимая его оттуда, мы убедимся в том, что при этом в соленоиде каждый раз возникает ток. Направление тока зависит от того, какой именно конец магнита опускается в соленоид. При вынимании магнита из соленоида направление тока изменяется на обратное.

Видоизменим теперь наш опыт, сохранив его сущность. С этой целью приготовим два соленоида разных размеров. Меньший соленоид должен свободно входить внутрь большего. К меньшему соленоиду присоединим провода от гальванической батареи.

Провод с током — это магнит, как, показал Ампер. Следовательно, опускание приключенного к батарее маленького соленоида в большой равносильно опусканию магнита внутрь соленоида. Опыт вполне подтверждает это соображение.

В подобных опытах Фарадею удалось получить так называемые наведенные, или индукционные, токи.


* * *

Фарадей перевернул страницу своей толстой тетради и задумался. В его голове возникали планы новых опытов, которые должны были всесторонне подтвердить уже наблюдавшийся результат.

«Удаление и приближение магнита к соленоиду, соединенному с измерительным прибором, равносильно тому, что в первом случае усиливается магнетизм магнита, а во втором — он ослабевает. Точно так же приближение соленоида с током равносильно усилению его магнитных свойств при помощи увеличения проходящего в нем тока. В таком случае, по-видимому, можно опустить маленький соленоид в большой и, больше не двигая его с места, действовать лишь размыкателем тока. Каждый раз, когда я буду замыкать и размыкать цепь катушки, связанной с гальванической батареей, должен появляться ток и во второй катушке», — рассуждал Фарадей.

Электромагнитная индукция. При передвижении магнита в соленоиде в нем наводится электродвижущая сила. Возникновение электрического тока показывает включенный в цепь гальванометр.

Опыт подтвердил и это рассуждение Фарадея. Вместе с тем ученый заметил, что более сильное отклонение стрелки наблюдается в том случае, когда внутрь маленького соленоида помещается железный сердечник.

Проволочное кольцо с обмоткой, изготовленное Фарадеем и участвовавшее в опытах, при которых была открыта электромагнитная индукция.

Теперь Фарадею была понятна причина неудачи его первых опытов. Ведь ток во второй цепи возбуждается лишь при замыкании и размыкании цепи, при приближении и удалении обмоток, при опускании и поднятии магнита или вообще во время изменения расположения цепей или возбуждающего магнита. А в первых его опытах все оставалось в покое. Кроме того, Фарадей не обращал раньше внимания на мультипликатор в моменты замыкания и размыкания цепи, так как ошибочно представлял себе, что новое явление должно произойти не в эти первый и последний моменты, но во время установившегося тока в первичной цепи.

Схема опыта Фарадея. При замыкании и размыкании ключа (слева внизу) между концами вторичной обмотки проскакивают электрические искры наведенного электричества.

24 ноября 1831 года Фарадей доложил собранию членов Королевского общества о своем великом открытии электромагнитной индукции. Этот доклад содержал сто тридцать девять пунктов с описанием большого числа опытов, проделанных ученым в подтверждение своего открытия.

— Теперь уже можно, наконец, магнетизм превращать в электричество! — говорил Фарадей.

Стало ясно, что на основании открытого Фарадеем явления электромагнитной индукции, или наведения, можно будет построить новые источники электричества.

Уже в июле 1832 года Фарадей получил письмо от некоего Р. М., который рассказывал об изобретенной им электрической машине. Р. М. писал, что свое изобретение он сделал на основании открытия Фарадея.

В разных странах изобретатели разрабатывали конструкции электрических машин, основанных на явлении электромагнитной индукции. В России академик Б. С. Якоби на основе открытия Фарадея изобрел электрический двигатель.

Благодаря открытию Фарадея стало возможным быстрое развитие электротехники и широкое применение дешевого электричества для различных производственных, бытовых и научных целей.

29 августа 1831 года, день знаменитого опыта Фарадея, вошло великим памятным днем в историю гениальных открытий. Этот день был поворотным также и для самого Фарадея. С этого времени и почти до самой смерти Фарадей занимался главным образом только исследованиями в области электричества и магнетизма.

В 1833–1834 годах Фарадей открыл законы прохождения токов через проводящие жидкости (электролиты) и законы их химического разложения (электролиза).

Чертеж Фарадея, где впервые приведены новые электролитические наименования: катион, анион, электролит, катод, анод.

Давно уже было замечено действие электрического тока на проводящие жидкости, распадающиеся при этом па свои составные части. Например, вода при прохождении через нее тока распадается на водород и кислород.

На основании многочисленных опытов Фарадей установил следующий закон:

«Количество вещества, выделяющегося на токоподводящих пластинках (электродах), погруженных в жидкость, зависит от силы тока и от времени его прохождения: чем больше сила тока и чем дольше он проходит, тем большее количество вещества выделится из раствора».

Когда же Фарадей пропускал один и тот же ток последовательно через несколько различных растворов, он заметил, что количество выделившегося на электродах вещества неодинаково, хотя ток и время его прохождения были одними и теми же. Фарадей точно взвесил выделившиеся вещества и заметил, что вес их не случаен и зависит от химического состава вещества. На каждый грамм водорода всегда получалось около 23 граммов натрия, 35,5 грамма хлора, 107,9 грамма серебра и 31,8 грамма меди. Установленные Фарадеем законы стали основой для новой науки — электрохимии.

В 1835 году Фарадей открыл явление самоиндукции.

— Сущность этого явления, — пояснял Фарадей, — заключается в том, что при каждом изменении силы тока в данном проводнике (особенно катушке с железным сердечником) изменяется окружающее проводник магнитное поле и, вследствие этого, в том же проводнике (в нем самом) наводится (индуктируется) добавочная электродвижущая сила. Самоиндукция проявляется в моменты замыкания и размыкания электрической цепи, а также при возрастании или убывании в ней тока. При замыкании цепи возникает ток, противодействующий основному. Поэтому проходит некоторое, хоть и небольшое время, прежде чем ток достигнет своей основной величины. При размыкании цепи ток самоиндукции имеет направление основного тока, поэтому заметно усиливает его и вместе с тем оттягивает момент прекращения тока. По этой же причине ток размыкания (экстраток) дает яркую искру, проскакивающую в месте разрыва цепи.

Фарадей читает научно-популярную лекцию.

Еще через два года Фарадей показал, что не только железо и сталь обнаруживают магнитные свойства: подобными же свойствами, хотя и в значительно меньшей степени, обладают решительно все вещества.

Подвешивая на тонких нитях между полюсами сильного магнита небольшие кусочки различных веществ, ученый увидел, что стерженьки, сделанные из одних веществ, располагаются в направлении от полюса к полюсу. Эти тела Фарадей назвал парамагнитными («пара» по-гречески — вдоль[20]). Таковы, например, металлы алюминий, марганец, платина.

Стерженьки же из других веществ располагались перпендикулярно к линии, соединяющей магнитные полюсы. Фарадей назвал их диамагнитными (по-гречески «диа» — поперек[21]). Таковыми оказались медь, серебро, золото, вода, висмут и другие. Такими же свойствами обладают яблоко, хлеб, мясо.

Поле стержневого магнита. Стрелки показывают направление силовых линий.

Вещества, способные сильно намагничиваться, Фарадей назвал ферромагнитными (буквально — железомагнитными). Это железо, сталь, чугун, никель, кобальт и другие.

Опыты над магнитными свойствами различных веществ привели Фарадея к заключению о неодинаковой их «магнитной проницаемости».

Раскрывая одну за другой сокровенные тайны природы, Фарадей все больше и больше склонялся к такой мысли:

«Все силы природы способны превращаться друг в друга».

Электромагнит Фарадея. При помощи медного диска, вращающегося между полюсами этого электромагнита, Фарадей впервые осуществил (1831 г.) магнитоэлектрическую машину — обратил магнетизм в электричество.

Давний спор между учеными о причине возникновения электричества в гальванических батареях закончился принятием точки зрения Фарадея:

«Химическое действие растворов на металл, а не только простое соприкосновение или контакт металлов, вызывает электрический ток. В гальванических батареях химическая энергия превращается в электрическую».

Фарадея чрезвычайно занимал вопрос о том, каким именно способом взаимодействуют между собою магниты, а также электрически заряженные проводники.

Современный гигантский электромагнит для лабораторных работ.

«Электрические и магнитные силы, — рассуждал Фарадей, — не могут действовать на расстоянии без посредства какой-то промежуточной среды».

Фарадей не мог указать, какая же это среда и как именно она передает действие электрических и магнитных сил, но он был твердо уверен в том, что этими передатчиками являются силовые линии.

Если взять лист бумаги, положить его на полюсы лежащего горизонтально подковообразного магнита и посыпать бумагу железными опилками, они расположатся на бумаге вдоль силовых магнитных линий. Это и есть так называемый магнитный спектр. Если же пропустить вертикальный провод с током сквозь плоскость горизонтально положенного листа картона, то железные опилки на этой плоскости также расположатся по линиям сил.

В катушке, внутрь которой при наведении электрического тока опускают магнит, силовые линии магнита пересекают витки обмотки катушки. Такое же явление происходит и во всех других случаях индукции, когда роль магнита играют проводники с током. Оказалось, что чем гуще поле силовых линий и чем быстрее их пересекает проводник, тем более сильный ток в нем наводится. Фарадей даже получил электрический ток без всякого магнита в проволочной рамке, которая быстро вращалась, так как она находилась в пространстве, заполненном магнитными линиями земного шара.

Учение об электрических и магнитных силовых линиях было одним из последних великих открытий Фарадея. Многолетняя упорная исследовательская работа сильно надломила его организм, изнурила и истощила его силы. Фарадей особенно тяжело переживал ослабление памяти. Бывали случаи, когда он по нескольку раз повторял один и тот же уже ранее проделанный опыт.

— Моя память слабеет с каждым днем. Я все забываю… — все чаще с отчаянием жаловался Фарадей своим близким.

12 марта 1862 года Фарадей в последний раз работал в лаборатории.

25 августа 1867 года великий исследователь навсегда заснул в своем кресле. Смерть Фарадея острой болью сжала сердца ученых всего мира. Новыми завоеваниями науки в области электричества и широким применением их на благо человечества почтили последующие поколения ученых память великого ученого.

Но Фарадей еще при жизни видел плоды своих трудов — первые замечательные изобретения, в которых применялось электричество.


Загрузка...