Глава 10. Анатомия и биохимия развития ванильного стручка (Vanilla planifolia G. Jackson)

Введение

Плоды ванили широко известны как «стручки», поскольку они похожи по форме на плоды бобовых, которые возникли в результате эволюции одного плодолистика. Фактически, на самом деле с ботанической точки зрения, поскольку плод является результатом эволюции трех сросшихся плодолистиков, это не стручок, а коробочка (сухой, растрескивающийся плод, образовавшийся в результате эволюции нескольких плодолистиков). В семействе орхидей, которое включает род Vanilla, коробочка состоит из трех створок, ограниченных шестью расщеплениями (по два на плодолистик), расположенными по обеим сторонам семяносца (параплацентарное раскрытие, рис. 10.1a) (Dupont and Guignard, 2007).

РИСУНОК 10.1. Вскрытие коробочки: (а) общий случай коробочки семейства орхидей (шесть расщеплений раскрытия, приводящие к трем створкам); (б) конкретный случай коробочки V. planifolia (два расщепления, приводящие к двум створкам).


Члены подсемейства Vanilloideae, однако, обладают некоторыми характеристиками, которые необычны для семейства орхидей (Cameron and Chase, 2000), в том числе относящимися к раскрытию. В случае рода Vanilla коробочка имеет только два расщепления, соответствующие центральным осям двух из трех сросшихся плодолистиков. По достижении зрелости коробочка открывается по двум трещинам раскрытия (для Vanilla planifolia и Vanilla pompona), образуя тем самым две створки (рис. 10.1b); это локулицидная коробочка. Некоторые виды могут даже быть нераскрывающимися (для Vanilla tahitensis).

Ванильная коробочка однокамерная (единственная центральная полость завязи, в которой находятся все семена). Позже в этой главе мы больше не будем использовать ботаническое слово «коробочка», а будем пользоваться более часто употребляемым «боб» или «стручок».

Для V. planifolia G. Jackson (которая, если не указано иное, является единственным видом, упомянутым в остальной части главы), цветки сгруппированы в соцветия (рис. 10.2), которые напоминают кисть, так как нижняя завязь имитирует отсутствующую цветоножку.

РИСУНОК 10.2. Соцветие V. planifolia. Перед опылением завязи обращены цветком вверх, а затем изгибаются вниз.


После опыления завязь развивается очень быстро, удваиваясь в длину за несколько дней и изгибаясь вниз (рис. 10.2). Оплодотворение происходит на 1,5–2 месяца позже (Childers, Cibes, 1948; Roux, 1954). Каждая оплодотворенная завязь дает стручок. Он достигает своего полного размера и веса через 10-15 недель после опыления (рис. 10.3) (Gregory et al., 1967; Brodélius, 1994; Havkin-Frenkel et al., 1999). По мере созревания стручка, содержание влаги снижается с 90–92% до 82–85% к моменту сбора урожая (Shankaracharya and Natarajan, 1973; Brodélius, 1994; Ranadive, 1994), другими словами, примерно через 8–9 месяцев после опыления (Sreekrishna Bhat, Sudharshan, 2002).

РИСУНОК 10.3. Незрелые стручки ванили.


Зрелые стручки длинные, зеленые и изогнутые на конце цветоноса. Их длина составляет около 15 см, ширина может достигать 15 мм, а вес – около 10–15 г. Эти цифры имеют лишь порядки величины и могут значительно различаться в зависимости от генетических факторов, физиологии растения, агрономических или экологических условий и т. д.

После этого периода созревания, независимо от того, собран он или нет, плод становится бледно-зеленым и начинает желтеть от цветочного кончика. Раскрывающиеся плоды (пропорция варьируется в зависимости от вида, а также внутри одного и того же вида) расщепляются надвое от цветочного кончика. Затем стручки темнеют, некоторые очень заметно, опять же от цветочного кончика. Затем они теряют первоначальную упругость и становятся полностью гибкими, что свидетельствует об увядании плода.

Похоже, что плод выделяет этилен (Ducamp et al., 2000); однако некоторые авторы не смогли измерить это во время созревания стручков (Havkin-Frenkel et al., 2005). Однако, чувствительность плода к этилену четко наблюдалась в ходе различных научных работ; в частности, этилен увеличивает скорость раскрытия стручков (Balls and Arana, 1941; Arana, 1944; Havkin-Frenkel et al., 2005).

Было бы целесообразно провести некоторые углубленные исследования, чтобы определить, является ли плод климактерическим, и если да, то на какой стадии его развития происходит респираторный климактерический период. Эти данные могут быть полезны при контроле стадии сбора урожая стручков и их обработки в лучшую сторону перед вялением.

Данных о составе зрелых зеленых стручков очень мало. В таблице 10.1 представлены значения, полученные Гаррос-Патином и Ханом для стручков с Мадагаскара, которые были проанализированы в 1950 году (Garros-Patin and Hahn, 1954).

ТАБЛИЦА 10.1. Типичный состав зрелой зеленой ванили
Сырой вес % Сухой вес %
A B A B
Вода 79.6 75
Зола 0.75 0.97 3.68 3.88
Целлюлоза 0.79 2.65 3.87 10.60
Редуцирующие сахара 1.42 1.01 6.96 4.04
Невосстанавливающие сахара 3.03 2.45 14.85 9.72
Неазотистые вещества 10.85 14.41 53.19 57.7
Эфирный экстракт 1.58 2.14 7.74 8.56
Белки 1.75 1.37 8.58 5.50
Кислотность 0.23 1.13

Источник: Данные из Garros-Patin, J. and Hahn, J. 1954. In: G. Bouriquet, ed. Le vanillier et la vanille dans le monde. Paul Lechevalier, Paris, 559–615.

A и B – два разных образца зрелых свежих стручков с Мадагаскара.


Результаты анализов, проведенных CIRAD на зрелых зеленых стручках (обычное время сбора урожая) с Мадагаскара, представлены в таблице 10.2. Эти результаты не предназначены для того, чтобы быть репрезентативными для среднего состава зрелых зеленых стручков с растения ванили, но должны восприниматься только как справочные. Более того, они относительно согласуются с результатами, полученными Гаррос-Патеном и Ханом.

ТАБЛИЦА 10.2. Типичный состав зрелой зеленой ванили (нормальная стадия сбора) (г/100 г сырой массы) (г/100 г сухой массы)
(г/100 г сырой массы) (г/100 г сухой массы) Процент каждого соединения по отношению к общему количеству
Вода 83.0 0
Волокна 7.6 45 Лигнин 62 Целлюлоза 27 Гемицеллюлоза 11
Сахара 1.7 10 Сахароза 80 Глюкоза 15 Фруктоза 5
Липидыa 2.0 12 C18:2 54 C18:1ω9 10 C16 10
Белки 0.5 3
Органические кислоты 0.9 5 Лимонная кислота 50 Яблочная кислота 30
Минеральные элементы 1.7 10 K 28 Ca 10 Mg 2
Глюкованилин 1.7 10

a Процент жирных кислот относится к омыляемой фракции (а не к общей липидной фракции).


Волокна (гемицеллюлоза, целлюлоза и лигнин) составляют почти 8% от сырого веса, что является высоким показателем по сравнению с фруктами и овощами (от 1 до 4%).

Сахара в основном состоят из сахарозы, и их общее содержание сопоставимо с содержанием во многих овощах (<4%) и намного меньше, чем в большинстве плодов (12%).

Белки присутствуют в относительно небольших количествах, которые обычно наблюдаются в большинстве плодов и овощей (<1%). Среди этих белков мы отмечаем наличие исключительно высокой активности глюкозидазы (в среднем около 1000 нкатал/г свежих плодов), тесно связанной с ароматическим развитием ванили; это будет подробно рассмотрено в конце главы.

Липиды составляют 2% от сырого веса, что является высоким показателем по сравнению со многими фруктами и овощами (за исключением масличных плодов), где обычно наблюдается содержание около 0,2–0,4%. Неудивительно, что при «умерщвлении» стручков на поверхности воды появляется значительная маслянистая фаза. Однако, по этой липидной фракции было проведено большое количество исследований (Ramaroson-Raonizafinimanana et al., 1997, 1998a, 1998b, 1999, 2000; Maestro et al., 2007).

Органические кислоты в основном представлены малатом и цитратом (80% всех органических кислот), и их общее содержание аналогично содержанию в слабокислых плодах и ​​овощах.

Основные минеральные элементы – калий и кальций; их соответствующее содержание (470 мг и 170 мг) является высоким по сравнению с большинством плодов и овощей.

Наконец, содержание глюкованилина составляет около 1,7% от веса свежих зеленых плодов (а иногда и больше), что является действительно исключительным и характерным для V. planifolia, и является причиной её коммерческой ценности. Более подробно о глюкованилине рассказывается в заключительной части главы.

Эти разные данные об основном составе зеленых плодов были в целом подтверждены в недавней публикации (Odoux and Brillouet, 2009); тем не менее, их необходимо дополнить более систематическими исследованиями, которые в настоящее время отсутствуют.

Анатомия и морфогенез стручков ванили

Морфология, анатомия и гистология зрелых стручков ванили

Часть представленной ниже информации в значительной степени взята из следующих источников: De Lanessan, 1886; Villiers et al., 1909; Swamy, 1947; Roux, 1954; Odoux et al., 2003; and French, 2005.

Зрелые зеленые стручки ванили имеют примерно треугольное поперечное сечение с центральной полостью, содержащей множество черных семян (рис. 10.4). С анатомической и гистологической точки зрения, от внешней к внутренней части плода мы находим экзокарп, мезокарп и эндокарп (рис. 10.5d).

РИСУНОК 10.4. Поперечный разрез зрелых стручков ванили.

РИСУНОК 10.5. От цветка к зрелой ванили. Поперечные срезы (3 мкм) стручка ванили, залитого в смолу Technovit 7100, на разных стадиях после окрашивания периодической кислотой Шиффа (ПКШ)–нафтоловый сине-черный: (а) через 9 дней после опыления (дпо); (b) 14 дпо; (c) 60 дпо; (d) через 8 месяцев после опыления. (Данные из Odoux et al., 2003. Annals of Botany 92: 437–444). Стенки и запасные сахара окрашены в розовый цвет; белки синего цвета. en – эндокарп; ep – экзокарп; fu – семяножка; me – мезокарп; pl – семяносец; s – семя; vb – сосудистый пучок.


Экзокарп состоит из слоя смежных клеток, которые различаются по длине, имеют многоугольную форму и проходят параллельно длинной оси стручка. Эти толстостенные клетки, окрашенные в интенсивный розовый цвет реактивом Шиффа (рис. 10.5d) из-за их биохимического состава (целлюлоза, гемицеллюлозы и пектиновые вещества), дифференцируются в толстую кутикулу на внешней стороне плода. Слой клеток, образующий экзокарп, обеспечивает стручку защитный слой.

Мезокарп составляет большую часть объема плода (рис. 10.5d) и состоит из клеток паренхимы. Он слагается из вакуолизированных клеток, которые увеличиваются в размере от экзокарпа или эндокарпа к центральной части мезокарпа, где их размер может достигать 300 мкм. Такое значительное увеличение размера, по-видимому, сопровождается увеличением плоидности за счет эндорепликации (S. Brown, личная переписка).

Мезокарп васкуляризован. Имеются три группы из трех сосудистых пучков, образующих треугольник (рис. 10.5d). Они отмечают центр каждого плодолистика и с эволюционной точки зрения представляют собой главный сосудистый пучок макрофиллы. Среди этих треугольно расположенных групп пучков мы отмечаем наличие трех дополнительных сосудистых пучков, расположенных в центре мезокарпа, на полпути между экзокарпом и эндокарпом. Сосудистые пучки стручка имеют закрытый коллатеральный тип, как и у большинства однодольных.

Внутри мезокарпа, в двух из трех групп в три сосудистых пучка, на поперечных гистологических срезах стручка можно наблюдать радиальный слой специализированных клеток (рис. 10.5а). Клетки, составляющие этот слой, расположены вдоль луча стручка и содержат запасы углеводов в виде гранул крахмала. Эти два слоя, которые расходятся от внутренней к внешней части мезокарпа, отмечают расположение двух будущих линий расщепления (рис. 10.5a).

Эндокарп состоит из одного или двух слоев мелких клеток, которые покрывают внутреннюю часть полости плода (рис. 10.5c).

В центре плодолистика находятся специализированные клетки – сосочки. Сосочки интенсивно окрашиваются реактивом Шиффа (рис. 10.5d). В соответствии с предыдущими наблюдениями (De Lanessan, 1886) сосочки также сильно окрашиваются нильским красным (рис. 10.6), что указывает на высокую концентрацию запасных липидов. Некоторое количество белкового материала, окрашенного в зеленовато-голубой цвет с помощью нафтолового сине-черного, можно увидеть в сосочках и в центральной полости в непосредственной близости от апикальных концов сосочков (Рисунки 10.5c и d).

РИСУНОК 10.6. Визуализация накопления липидов в сосочках зрелых стручков ванили после окрашивания нильским красным (визуализация с помощью конфокального микроскопа Zeiss 510 Meta, лазер 488 нм и 405 нм; желтый – окрашивание нильским красным, синий – автофлуоресценция стенок и сосочков).


Каждая сторона стручка несет семяносец, состоящий из четырех-пяти слоев паренхимных клеток и покрытый эпидермисом. Семяносец разделен на две продольные пластинчатые семяножки, состоящие из трех или четырех слоев клеток (рис. 10.5b), к которым прикреплены семена. На поперечном срезе каждая пара пластинок семяносца выглядит как лопасти в форме пальцев, согнутые внутри центральной полости (рис. 10.5d). В клетках эпидермиса пластинок семяносца содержатся многочисленные липидные везикулы, как в сосочках.

При созревании в полости плода появляются многочисленные мелкие семена (в среднем 0,2 мкм) продолговатой формы с темно-окрашенным интегументом. Каждое семя прикреплено к длинной узкой семяножке. Семена содержатся в слизи, которая, как было обнаружено, по по существу своей природы является полисахаридной (Odoux and Brillouet, 2009). Остатки этой слизи, окрашенные в светло-розовый цвет, показаны на рис. 10.5d вокруг отверстий, ранее занятых семенами.

Онтогенез ванильных стручков: от цветка к зрелому стручку

Цветки ванили, группами по 10-15 штук, образуют небольшие кисти в пазухе листа. Белые, зеленоватые или бледно-желтые по цвету, они имеют типичную структуру цветков орхидей, наиболее развитых из всех цветов в царстве растений. Околоцветник этих цветов состоит из трех чашелистиков и трех лепестков. Самый нижний лепесток цветка – губа, обычно большой, со шпорами. Под околоцветником находится очень длинная завязь, которая заканчивается короткой цветоножкой, прикрепляющей цветок к оси соцветия (рис. 10.2). До опыления ванильная завязь еще далеко не полностью развита. После опыления – естественные опылители не очень хорошо известны (Lubinsky et al., 2006) – околоцветник увядает и отваливается (рис. 10.2), в то время как стенка нижней завязи постепенно разрастается, образуя околоплодник (коробочку) плода, а семяпочки внутри полости завязи превращаются в семена. Первым признаком того, что завязь развивается в плод, является резкое и быстрое увеличение её размера. С анатомической и гистоцитологической точки зрения наиболее впечатляющие изменения касаются внутренней части завязи. После оплодотворения можно наблюдать поляризованное удлинение клеток эндокарпия по направлению к полости завязи. Эти клетки разовьются в секреторные трихомы – сосочки. Через 9 или 14 дней после опыления сосочки остаются недифференцированными (рис. 10.5a и b). На этом этапе верхняя часть центральной полости опыленной завязи содержит ткань, состоящую из дегенеративных клеток, глубоко окрашиваемых в розовый цвет реагентом Шиффа (рис. 10.5b). Эта ткань может соответствовать тканям, названными Арбером (1937) «передающими тканями», паренхима обеспечивающая питательный субстрат, помогающий пыльцевой трубке прорастать через стиль и внутри полости завязи (рис. 10.5a и b).

Зона дифференциации сосочков не сплошная; она расположен в центре листа плодолистика, в зоне околоплодника, под тремя треугольно-расположенными сосудистыми пучками (рис. 10.5b). Через два месяца после опыления клетки сосочка начинают свое удлинение и дифференцировку. На этом этапе их длина может достигать 20 мкм (рис. 10.5в). В зрелом состоянии сосочки имеют длину около 200 мкм (рис. 10.5d).

Под ультрафиолетовым светом сосочки автофлуоресцируют белым цветом (рис. 10.7а). Клеточная стенка зрелых сосочков, которая неравномерно утолщается, подвергается лизису на её дистальном конце, облегчая секрецию содержимого в полость коробочки (рис. 10.5d).

РИСУНОК 10.7. Свежие поперечные срезы (100 мкм) зрелых стручков ванили (через 8 месяцев после опыления), наблюдаемые с помощью эпифлуоресцентного микроскопа (Leica DM6000, фильтр A: возбуждение 340–380 нм, излучение 425–800). а) общий вид семяносца и сосочков; (b) семяножка, семена и «матрикс» с увеличением. en – эндокарп; fu – семяножка; pl – семяносец; vb – сосудистый пучок.


Также можно наблюдать белое флуоресцентное вещество (рис. 10.7b и 10.8), которое окружает семена и частично заполняет полость стручков. Это вещество, названное Френчем (French, 2005) «матриксом», не имеет клеточного происхождения (то есть, конечности семяножек), а скорее аморфно и отличается от полисахаридной слизи.

РИСУНОК 10.8. Продольный вид зрелого стручка, вскрытого лезвием бритвы в одном из трех углов (в области сосочков), наблюдаемый с помощью стереомикроскопа Zeiss Lumar V12 [белая флуоресценция стенок (в мезокарпе), сосочков и «матрикса» = автофлуоресценция с УФ-возбуждением].


Семяносцы (особенно край пластинки семяносца и семяножек) также автофлюоресцируют (золотисто-желтая флуоресценция, рис. 10.7a и b).

В мезокарпе можно наблюдать белые флуоресцентные глобулы, которые могут соответствовать полифенолам. Одревесневшие ткани сосудистых пучков (волокна ксилемы и склеренхимы) излучают синеватую автофлуоресценцию, связанную с лигнином, содержащимся в их стенках (рис. 10.7а).

Онтогенез семяпочки: от семяпочки к семени

У растений ванили существует значительный интервал между микроспорогенезом, в результате которого образуется пыльца, и макроспорогенезом, который приводит к образованию зародышевого мешка. Удивительно, но дифференциация семяпочек на верхушке семяносцев происходит в основном после опыления. Через два дня после опыления семяпочки остаются недифференцированными (рис. 10.9 а). Пластинки семяносцев разветвляются на большое количество семяножек, которые составляют семяносцы (рис. 10.9 а). Они состоят из четырех слоев клеток, которые постепенно вакуолизируются от основания (со стороны пластинки семяносца) к вершине. Конец каждого семяносца содержит группу меристематических клеток (активно делящихся клеток, имеющих плотную цитоплазму с центральным ядром) (рис. 10.9 а). Именно этот меристематический кончик обеспечивает рост семяносца, а затем смещение семяпочек в конечное положение. Это становится ясно через 15 дней после опыления (рис. 10.9 б).

Внешний интегумент и внутренний интегумент семяпочки дифференцируются почти одновременно с индивидуализацией материнской клетки споры, которая претерпевает мейоз (рис. 10.9 б). Наружный интегумент состоит из четырех слоев клеток и до восьми в его основании. Эта характеристика отличается от других орхидей, внутренний интегумент которых состоит из одного слоя клеток. Внутренний интегумент и внешний интегумент семяпочки не слившиеся, и между ними есть промежуток.

Нуцеллус демонстрирует значительное значительно развитие по сравнению с другими орхидеями – он сохраняется в виде нескольких клеток в основании семян, когда они рассеиваются.

Чаще всего у орхидей развитие эндосперма ограничивается в среднем 10 ядрами (максимум 12). Этот эндосперм быстро усваивается, начиная с первых делений зиготы. В отличие от эндосперма, ядрышко сохраняется до конца развития зародыша, особенно в халазе, когда семя созревает. Зигота окружена утолщенной внешней клеточной стенкой и имеет центральное звездообразное ядро с единственным ядрышком, окрашиваемым в черный цвет нафтоловым сине-черным (рис. 10.9 в). Зародыш, который прекращает развиваться очень рано (сразу после глобулярной стадии, но до стадии торпедо), накапливает запасы липидов и белков в виде алейроновых зерен, которые интенсивно окрашиваются в черный цвет нафтоловым сине-черным (рис. 10.9 d).

РИСУНОК 10.9. От семяпочки до семени: поперечные срезы (3 мкм) стручков ванили на разных стадиях развития, залитые в смолу Technovit 7100 после окрашивания ПКШ-нафтоловый сине-черный. (а) 2 дпо; (б) 15 дпо; (c) 20 дпо; (г) 200 дпо. Стенки и запасные сахара окрашены в розовый цвет, белки – в синий. fu – семяножка, pl – семяносец.


Оболочка семян ванили – результат эволюции внешнего и внутреннего интегументов семяпочки. Самый внешний слой клеток в наружном интегументе семяпочки уплотняется (рис. 10.9d). После оплодотворения эти клетки подвергаются поляризованному удлинению по перпендикулярной оси на поверхности семяпочки. Они накапливают коричневые соединения вдоль своих стенок, которые постепенно делают их непрозрачными и придают семенной оболочке сетчатую орнаментацию. Это изменение отличается от обычно наблюдаемого у других орхидей, у которых семенная оболочка более тонкая и полупрозрачная.

Метаболизм β-глюкозидазы и глюкованилина в стручках ванили

Как отмечалось во введении, одной из наиболее важных характеристик V. planifolia является исключительно высокая активность глюкозидазы и содержание глюкозилированного предшественника (особенно содержание глюкованилина). Поскольку ароматические качества ванили тесно связаны с гидролизом этих глюкозилированных предшественников β-глюкозидазой(ами), присутствующей в стручках (см. также главы 11 и 12), были проведены различные исследования для определения мест их накопления и биосинтеза в плодах.

Тканевая и клеточная локализация активности глюкозидазы и глюкованилина в зрелых стручках ванили

В конечном счете, было проведено очень мало исследований попытавшихся определить части плодов, содержщие предшественники глюкозидов, ароматических компонентов и активности глюкозидазы.

Тем не менее, очень давно, Де Ланессан выдвинул в неявном виде гипотезу о том, что предшественники аромата и активность глюкозидазы происходят в центральной области семяносца, поскольку заметил, что только эта часть плода имеет характерный запах после того, как стручок нарезан тонкими продольными ломтиками от внешней части к внутренней (De Lanessan, 1886).

Однако, Арана и Джонс с Висенте обнаружили, что большая часть глюкованилина (60–80%) присутствовала в мясистой части стручков (внешний мезокарп), а остальное – во внутреннем семяносце, тогда как ферментативная активность проявляется исключительно во внешней части стручка (Arana, 1943; Jones and Vicente, 1949) (рис. 10.10a). Арана делает заключение, что глюкованилин из внутренней части плода должен распространиться во внешнюю часть, где находится фермент, или наоборот, чтобы подвергнуться гидролизу во время обработки ванили или когда плод созревает на лиане. Эту гипотезу поддерживают все авторы, опубликовавшие работы о ванили за последние 60 лет.

РИСУНОК 10.10. Тканевая локализация активности глюкованилина и β-глюкозидазы в стручках ванили согласно (а) Arana, 1943 и Jones and Vicente, 1949, (b) Odoux et al., 2003, (c) Joel et al., 2003 и Havkin-Frenkel et al., 2005. (Данные из Odoux, E., Fruits. 61, 171–184, 2006.)


С другой стороны, было показано (Odoux et al., 2003), что глюкованилин обнаруживался только во внутренней части плода и, в основном, присутствовал в семяносце и, в меньшей степени, в сосочках (рис. 10.10b). В более подробном исследовании (Odoux и Brillouet, 2009) оказалось, что, с учетом массового соотношения различных тканей и соответствующего содержания, глюкованилина в семяносце 92,2%, по сравнению с 7% в сосочках и 0,8% в мезокарпе. Глюкованилина не нашлось во внутриполостном пространстве вокруг семян, за исключением следов (которые могли быть артефактами).

Эти же авторы (Odoux et al., 2003) обнаружили, что активность глюкозидазы была намного выше в семяносце, чем в мезокарпе или сосочках (выраженная как общая активность на единицу массы свежей ткани). Распределение активности β-глюкозидазы, выраженное в процентах от максимального значения, оказалось следующим (Odoux and Havkin-Frenkel, 2005): 11% в мезокарпе, 100% в семяносце и 20% в сосочках (рис. 10.10b). Другими словами, существует почти идеальная суперпозиция между распределением глюкованилина и ферментативной активностью. В результате ферменту и глюкованилину не нужно распространяться в тканях плода для возникновения гидролиза (см. также главу 11).

Другие исследования (Joel et al., 2003; Havkin-Frenkel et al., 2005) подтвердили, что глюкованилин присутствует в светлой, внутренней части плода (в семяносце и сосочках). Они также предположили присутствие глюкованилина во внутриполостном пространстве (рис. 10.10c) – результат, получен при окрашивании катехином-HCl, после его биосинтеза (см. ниже) и выведения сосочками.

Однако, было найдено уменьшение градиента ферментативной активности (выраженной как удельная активность) от внешней части к внутренней области семяносца (Havkin-Frenkel et al. 2005). Распределение активности β-глюкозидазы, выраженное в процентах от максимального значения, было следующим (Odoux and Havkin-Frenkel, 2005): 100% в зеленой внешней ткани плода, 43% в ткани семяносца и 15% в в волосовидных клетках (рис. 10.10c). Эти результаты, которые диаметрально противоположны результатам Арана (Arana, 1943), также пришли к выводу, что глюкованилин или фермент должны распространяться через ткани стручка для его полного гидролиза.

Важно отметить, что результаты относительно тканевой локализации ферментативной активности (Havkin-Frenkel et al., 2005; и Odoux et al., 2003) не обязательно противоречат друг другу. Действительно, удельная активность – это соотношение между общей активностью и содержанием белка, и это содержание белка намного выше в семяносцах, чем в мезокарпе (Odoux and Brillouet, 2009). В таком исследовании, выражать ферментативную активность как удельную активность (Havkin-Frenkel et al., 2005) – бесполезно и может привести к неправильной интерпретации.

На клеточном уровне активность глюкозидазы локализована в цитоплазме или апоплазме (рис. 10.11). Однако, она не является ни вакуолярной, ни париетальной (Odoux et al., 2003). Глюкованилин не присутствовал, но различные соображения (концентрация обычно около 300 мМ и объемные соотношения клеточных компартментов) предполагают, что он может присутствовать в вакуоли (рис. 10.11), которая является предпочтительным компартментом для хранения вторичных метаболитов (Boudet et al., 1984; Wink, 1997; Beckman, 2000; Bartholomew et al., 2002). Предполагается, что он также может присутствовать во внеклеточной области вокруг семян (Joel et al., 2003), но полученные результаты (Odoux и Brillouet, 2009), противоречат этой гипотезе.

РИСУНОК 10.11. Клеточная локализация активности глюкованилина и β-глюкозидазы согласно Odoux et al., 2003.


Несмотря на значительные разногласия и путаницу, локализация активности глюкованилина и глюкозидазы на тканевом уровне теперь уточнена. Остается определить, присутствует ли глюкованилин во внутриполостном пространстве вокруг семян, что может иметь важное значение для подтверждения возможной тканевой специализации в биосинтезе глюкованилина (см. ниже).

На клеточном и субклеточном уровнях локализацию β-глюкозидазы можно уточнить с помощью такого метода, как иммунолокализация. Аналогичным образом, еще предстоит определить клеточную локализацию глюкованилина.

Накопление глюкованилина и β-глюкозидазы во время развития стручков ванили

Другая область, в которой проводилось очень мало исследований – это эволюция глюкованилина и активности β-глюкозидазы во время развития стручков, и еще меньше исследований было проведено по их эволюции в зависимости от типа ткани.

Единственная точка согласия, которая возникла в результате различных исследований эволюции глюкованилина (Ranadive et al., 1983; Sagrero-Nieves and Schwartz, 1988; Kanisawa et al., 1994; Brodélius, 1994; Havkin-Frenkel et al., 1999) заключается в том, что накопление ванилина или глюкованилина в плодах начинается с 15-й недели после опыления и продолжается примерно до 30-й недели.

Однако, форма, в которой накапливается ванилин (свободная или глюкозильная форма), может привести к путанице. Ранадив (Ranadive et al., 1983), Сагреро-Ньевес и Шварц (Sagrero-Nieves and Schwartz, 1988) показывают эволюцию свободного ванилина без предварительного гидролиза. По результатам Ранадива даже показано, что свободный ванилин составляет от 50% до 90% потенциального общего количества ванилина. Броделиус считает, что большая часть ванилина находится в глюкозильной форме, причем свободная форма не превышает 15% от потенциального общего количества (Brodélius, 1994). Канисава не сообщает о присутствии ванилина в его свободной форме во время развития зеленых плодов (Kanisawa et al., 1994), а Хавкин-Френкель указывает, что ванилин накапливается только в своей глюкозильной форме (Havkin-Frenkel et al., 1999). Последнее подтверждается Леонгом, который не нашел свободной формы в зеленых стручках (Leong, 1991). Уже Арана обнаружил (Arana, 1943), что ванилин присутствует почти исключительно в глюкозильной форме. За исключением некоторых исключительных случаев, наши собственные анализы всегда показывали, что в зрелых зеленых плодах преобладает глюкозильная форма (около 95% от общего количества), если мы предотвращаем любой случайный гидролиз во время экстракции глюкованилина (например, проводя экстракцию в чистом метаноле при −18°C). Однако, более позднее исследование (неопубликованные результаты) эволюции глюкованилина во время развития плода показало, что для стручков через 3, 5, 7 и 9 месяцев развития после опыления процент свободного ванилина по отношению к общему количеству (глюкозил плюс свободные формы) составлял 33, 6, 1,5 и 0,2% соответственно. Было бы интересно получить подтверждение этой эволюции, которая поднимает вопросы о роли глюкозилирования ванилина в стручках ванили.

По мнению различных исследователей, которые отслеживали эволюцию активности глюкозидазы во время развития стручков на лиане (Wild-Altamirano, 1969, Ranadive et al., 1983; Kanisawa et al., 1994), могло показаться, что эта активность соизмерима на всех стадиях роста плодов. Однако, активность фермента значительно возрастает между третьим и четвертым месяцем после опыления, достигая максимума примерно к пятому месяцу. Следовательно, эволюция активности β-глюкозидазы во время роста стручков аналогична активности глюкованилина. Анализы (неопубликованные результаты), проведенные авторами для определения активности глюкозидазы в плодах, собранных в феврале 2005 года на Мадагаскаре, на стадии развития, оцениваемой менее чем через два месяца после опыления (сильно асимметричная форма плода с более округлой частью у цветка, чем у плодоножки) показала активность глюкозидазы около 650 нкатал/г сырой массы для части у цветка по сравнению с 230 нкатал/г сырой массы для части возле плодоножки. Эти активности уже были высокими и предполагали градиент активности в фазе развития плода. Для плодов из той же кисти, которые достигли полного размера, но не развились в течение более 5 месяцев после опыления, активность глюкозидазы для частей у цветка и плодоножки была почти одинаковой, около 1100 нкатал/г сырого веса, или равной среднему значению, полученному для плодов в обычное время сбора урожая (см. ниже).

Содержание глюкованилина, полученное для зеленых плодов после восьми месяцев развития, сильно различается от одного исследования к другому. Если мы переведем различные значения, приведенные в литературе, в граммы глюкованилина на 100 г сухого веса, они будут находиться в диапазоне от 2% (Sagrero-Nieves and Schwartz, 1988) до 12% (Havkin-Frenkel et al., 1999). Дальнейшие исследования подтвердили, что зрелые зеленые стручки могут содержать глюкованилин примерно 10-15% от сухого веса (Ansaldi et al., 1988; Leong, 1991; Brunerie, 1993; Odoux, 2000; Havkin-Frenkel et al., 2005). Определение глюкованилина в 70 зеленых стручках семи различных кистей в течение 2000 г. на Мадагаскаре (неопубликованные результаты) показало, что содержание глюкованилина может варьироваться от 1,5% до 12% от сухого веса в зависимости от плодов, при этом большинство отдельных стручков представляют содержание глюкованилина около 10%. Другие определения, проведенные в 2006 г. на партиях из Папуа-Новой Гвинеи, показали максимальное содержание глюкованилина даже более 20% от сухого веса для некоторых плодов, подтверждая крайнюю изменчивость, которая может существовать в содержании глюкованилина в плодах V. planifolia.

Для активности β-глюкозидазы невозможно сравнить значения, приведенные в библиографии, из-за используемых средств (единиц) выражения, протоколов получения экстрактов ферментов, природы используемых буферов (pH, ионная сила и т. д.), молярности субстрата (обычно p-нитрофенил-глюкуронид) и так далее. Наш собственный опыт в этой области показал, что в зрелых зеленых стручках с физиологически здоровым внешним видом и стандартизированным точным протоколом (Odoux, 2004) эта активность также может значительно варьироваться. Для примерно 100 плодов урожая Мадагаскара 2000 года, активность β-глюкозидазы колебалась от 100 до 2000 нкатал/г свежего веса, при этом большинство отдельных стручков проявляли активность около 1000 нкатал/г свежего веса (неопубликованные результаты).

Более систематические исследования эволюции глюкованилина (и других глюкозидов) и активности глюкозидазы во время развития стручков необходимы для подтверждения или опровержения уже опубликованных исследований. В случае ароматических компонентов должны быть установлены очень строгие аналитические протоколы, чтобы устранить любую двусмысленность в отношении формы, в которой они присутствуют на различных стадиях развития. Также было бы полезно стандартизировать анализы активности глюкозидазы, для которых результаты почти никогда нельзя сравнивать от одного исследования к другому.

Эти изменения также следует измерять по типу ткани; в случае глюкозидов это может позволить получить дополнительную информацию о путях и местах биосинтеза этих компонентов (см. следующий раздел).

Место биосинтеза и метаболический путь для глюкованилина

В своей работе по биосинтезу ванилина Лекомт пришел к выводу, что в нем участвует «кониферозид» (кониферин), производящий конифериловый спирт путем ферментативного гидролиза, который затем превращался в ванилин под действием «оксидазы» (Lecomte, 1901, 1913). Горис, который выделил «ванилозид» (глюкованилин) в 1924 году, предположил, что второй возможный путь заключался в представлении действия «оксидазы» перед действием «гидролазы» (рис. 10.12). Не имея возможности выделить ни «кониферозид», ни конифериловый спирт, он в конце концов пришел к выводу, что эти гипотезы не подтверждаются (Goris, 1947). Однако, позже они были возобновлены Анваром (Anwar, 1963).

РИСУНОК 10.12. Биосинтетический путь ванилина, предложенный Лекомтом (Lecomte, 1901, 1913) и Горисом (Goris,1947).


Сейчас принято считать, что ванилин является продуктом биосинтетического пути шикимовой кислоты через фенилаланин, который приводит к фенилпропановым соединениям посредством ферментативного дезаминирования и, прежде всего, к коричной кислоте (рис. 10.13). Последовательные ферментативные гидроксилирования и метилирования затем ведут к образованию пара-гидроксикоричных кислот и, в частности, кумаровой, кофейной, феруловой и синапиновой кислот.

РИСУНОК 10.13. Предполагаемый путь биосинтеза соединений фенилпропана через шикимовую кислоту и l-фенилаланин. (Данные Odoux, E., Fruits, 61, 171–184, 2006.)


Большинство исследований, опубликованных в попытке прояснить последующие этапы пути биосинтеза ванилина, было проведено с использованием клеточных культур и показало, что различные пути могут быть активированы в зависимости от экспериментальных условий (обзор Dignum et al., 2001; Walton et al., 2003). Поэтому трудно сделать какие-либо окончательные выводы и еще труднее попытаться экстраполировать результаты, полученные в этих условиях, на растение.

Что следует из исследований, проведенных на плодах, о которых имеется очень мало информации (Zenk, 1965; Kanisawa, 1993; Kanisawa et al., 1994; Negishi et al., 2009), так это то, что предполагаются два пути биосинтеза:

• Первый предполагает, что прямым предшественником ванилина является феруловая кислота (соединение C6-C3). Это означает, что боковая цепь C3 молекулы позже укорачивается до ванилина (соединение C6-C1) (рис. 10.14). Это аргумент, выдвинутый Зенком (Zenk, 1965) и подтвержденный недавней работой Негиши (Negishi et al., 2009). В обоих случаях результаты были получены после внедрения помеченных 14C молекул в зеленые ванильные диски и мониторинга их превращения.

РИСУНОК 10.14. Биосинтетический путь ванилина, предложенный Зенком (Zenk, 1965) и Негиши (Negishi et al., 2009).


Результаты, полученные Негиши (2009) также предполагают, что биосинтез не вызывает вмешательства глюкозилированных промежуточных соединений. Таким образом, ванилин синтезируется в форме агликона, а затем глюкозилируется после образования.

• Второй вариант предполагает, что укорочение части C3 происходит выше на уровне 4-кумаровой кислоты (соединение C6-C3) с образованием 4-гидроксибензальдегида (соединение C6-C1), который затем гидроксилируется и метилируется с получением ванилина (рисунок 10.15). Этот аргумент поддерживает Канисава (Kanisawa et al., 1994) – хотя он также предлагает путь через диглюкозиды и не исключает возможности использования феруловой кислоты в качестве предшественника – на основе различных соединений, обнаруженных в плодах на разных стадиях развития. Это также аргумент, защищаемый командой из Университета Рутгерса (Принстон, США) очистившей 4-гидроксибензальдегидсинтазу (4ГБС) (из клеточных культур) и метилтрансферазу (ДОМТ) (из стручков), которые могут, соответственно, катализировать превращение 4-кумаровой кислоты в 4-гидроксибензальдегид и 3,4-дигидроксибензальдегид (протокатеховый альдегид) в ванилин (Podstolski et al., 2002; Pak et al., 2004). Существование фермента, способного гидроксилировать 4-гидроксибензальдегид до 3,4-дигидроксибензальдегида, еще предстоит доказать, и предпочтительно в плодах. Полученные результаты не показывают никакого превращения 4-гидроксибензальдегида в ванилин (Negishi et al. 2009).

РИСУНОК 10.15. Биосинтетический путь ванилина, предложенный Канисавой (Kanisawa et al., 1994) и Подстольски (Podstolski et al., 2002). В пути, предполагаемом Канисавой, участвующие соединения гликозилируются из 4-кумаровой кислоты (не показано на рисунке).


По пути, предложенному Канисавой (Kanisawa et al., 1994) глюкозилирование происходит, как только появляется 4-кумаровая кислота; последующие реакции, следовательно, будут включать глюкозилированные промежуточных соединений, вплоть до глюкованилина.

Как обсуждалось в предыдущих разделах, глюкованилин присутствует в полностью зрелых плодах в основном в семяносце и, в меньшей степени, в сосочках. Согласно Джоэлу (Joel et al., 2003), сосочки являются местом биосинтеза глюкованилина в стручках, что основано на присутствии 4-гидроксибензальдегидсинтазы (4ГБС) в цитоплазме клеток. Присутствие 4ГБС было выявлено путем иммунолокализации, но в примечании к исследованию, которое поддерживало представление результатов, не содержится подробностей об использованной методологии. Глюкованилин (или предшественники этой молекулы) затем секретируются этими сосочками во внеклеточное пространство вокруг семян. Френч считает, что присутствие других ферментов, участвующих в биосинтезе глюкованилина, также должно быть показано, чтобы подтвердить эту гипотезу (French, 2005).

Более того, если бы сосочки были единственным местом биосинтеза глюкованилина, это подняло бы вопрос о том, как он транспортируется к семяносцам (Odoux and Brillouet, 2009), которые являются основными местами накопления.

Еще предстоит провести много исследований, чтобы выяснить пути биосинтеза глюкованилина в стручках ванили, а также определить вовлеченные ткани.

Загрузка...